Advertisement for orthosearch.org.uk
Results 1 - 17 of 17
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 261 - 268
1 Mar 2023
Ruhr M Huber G Niki Y Lohner L Ondruschka B Morlock MM

Aims. The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Methods. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans. Results. Overimpaction reduced primary acetabular component stability (p = 0.038) but did not significantly increase strain release after implantation (p = 0.117) or plastic deformations (p = 0.193). Higher press-fits were associated with larger polar gaps for the 1 Hz reference impaction (p = 0.002, R. 2. = 0.77), with a similar trend for overimpaction (p = 0.082, R. 2. = 0.31). High-frequency impaction did not significantly increase primary stability (p = 0.170) at lower impaction forces (p = 0.001); it was associated with smaller plastic deformations (p = 0.035, R. 2. = 0.34) and a trend for increased acetabular component relaxation between strokes (p = 0.112). Higher press-fit was not related to larger polar gaps for the 6 Hz impaction (p = 0.346). Conclusion. Overimpaction of press-fit acetabular components should be prevented since additional strokes can be associated with increased bone damage and reduced primary stability as shown in this study. High-frequency impaction at 6 Hz was shown to be beneficial compared with 1 Hz impaction. This benefit has to be confirmed in clinical studies. Cite this article: Bone Joint J 2023;105-B(3):261–268


Bone & Joint Open
Vol. 4, Issue 7 | Pages 472 - 477
1 Jul 2023
Xiang W Tarity TD Gkiatas I Lee H Boettner F Rodriguez JA Wright TM Sculco PK

Aims. When performing revision total hip arthroplasty using diaphyseal-engaging titanium tapered stems (TTS), the recommended 3 to 4 cm of stem-cortical diaphyseal contact may not be available. In challenging cases such as these with only 2 cm of contact, can sufficient axial stability be achieved and what is the benefit of a prophylactic cable? This study sought to determine, first, whether a prophylactic cable allows for sufficient axial stability when the contact length is 2 cm, and second, if differing TTS taper angles (2° vs 3.5°) impact these results. Methods. A biomechanical matched-pair cadaveric study was designed using six matched pairs of human fresh cadaveric femora prepared so that 2 cm of diaphyseal bone engaged with 2° (right femora) or 3.5° (left femora) TTS. Before impaction, three matched pairs received a single 100 lb-tensioned prophylactic beaded cable; the remaining three matched pairs received no cable adjuncts. Specimens underwent stepwise axial loading to 2600 N or until failure, defined as stem subsidence > 5 mm. Results. All specimens without cable adjuncts (6/6 femora) failed during axial testing, while all specimens with a prophylactic cable (6/6) successfully resisted axial load, regardless of taper angle. In total, four of the failed specimens experienced proximal longitudinal fractures, three of which occurred with the higher 3.5° TTS. One fracture occurred in a 3.5° TTS with a prophylactic cable yet passed axial testing, subsiding < 5 mm. Among specimens with a prophylactic cable, the 3.5° TTS resulted in lower mean subsidence (0.5 mm (SD 0.8)) compared with the 2° TTS (2.4 mm (SD 1.8)). Conclusion. A single prophylactic beaded cable dramatically improved initial axial stability when stem-cortex contact length was 2 cm. All implants failed secondary to fracture or subsidence > 5 mm when a prophylactic cable was not used. A higher taper angle appears to decrease the magnitude of subsidence but increased the fracture risk. The fracture risk was mitigated by the use of a prophylactic cable. Cite this article: Bone Jt Open 2023;4(7):472–477


Bone & Joint Research
Vol. 6, Issue 1 | Pages 8 - 13
1 Jan 2017
Acklin YP Zderic I Grechenig S Richards RG Schmitz P Gueorguiev B

Objectives. Osteosynthesis of anterior pubic ramus fractures using one large-diameter screw can be challenging in terms of both surgical procedure and fixation stability. Small-fragment screws have the advantage of following the pelvic cortex and being more flexible. The aim of the present study was to biomechanically compare retrograde intramedullary fixation of the superior pubic ramus using either one large- or two small-diameter screws. Materials and Methods. A total of 12 human cadaveric hemipelvises were analysed in a matched pair study design. Bone mineral density of the specimens was 68 mgHA/cm. 3. (standard deviation (. sd). 52). The anterior pelvic ring fracture was fixed with either one 7.3 mm cannulated screw (Group 1) or two 3.5 mm pelvic cortex screws (Group 2). Progressively increasing cyclic axial loading was applied through the acetabulum. Relative movements in terms of interfragmentary displacement and gap angle at the fracture site were evaluated by means of optical movement tracking. The Wilcoxon signed-rank test was applied to identify significant differences between the groups. Results. Initial axial construct stiffness was not significantly different between the groups (p = 0.463). Interfragmentary displacement and gap angle at the fracture site were also not statistically significantly different between the groups throughout the evaluated cycles (p ⩾ 0.249). Similarly, cycles to failure were not statistically different between Group 1 (8438, . sd. 6968) and Group 2 (10 213, . sd. 10 334), p = 0.379. Failure mode in both groups was characterised by screw cutting through the cancellous bone. Conclusion. From a biomechanical point of view, pubic ramus stabilisation with either one large or two small fragment screw osteosynthesis is comparable in osteoporotic bone. However, the two-screw fixation technique is less demanding as the smaller screws deflect at the cortical margins. Cite this article: Y. P. Acklin, I. Zderic, S. Grechenig, R. G. Richards, P. Schmitz, B. Gueorguiev. Are two retrograde 3.5 mm screws superior to one 7.3 mm screw for anterior pelvic ring fixation in bones with low bone mineral density? Bone Joint Res 2017;6:8–13. DOI: 10.1302/2046-3758.61.BJR-2016-0261


Bone & Joint Research
Vol. 3, Issue 11 | Pages 317 - 320
1 Nov 2014
Basso T Klaksvik J Foss OA

Objective. In ex vivo hip fracture studies femoral pairs are split to create two comparable test groups. When more than two groups are required, or if paired femurs cannot be obtained, group allocation according to bone mineral density (BMD) is sometimes performed. In this statistical experiment we explore how this affects experimental results and sample size considerations. Methods. In a hip fracture experiment, nine pairs of human cadaver femurs were tested in a paired study design. The femurs were then re-matched according to BMD, creating two new test groups. Intra-pair variance and paired correlations in fixation stability were calculated. A hypothetical power analysis was then performed to explore the required sample size for the two types of group allocation. . Results. The standard deviation (. sd. ) of the mean paired difference in fixation stability increased from 2 mm in donor pairs to 5 mm in BMD-matched pairs. Intra-pair correlation was 0.953 (Pearson’s r) in donor pairs and non-significant at -0.134 (Pearson’s r) in BMD-matched pairs. Required sample size to achieve a statistical power of 0.8 increased from ten pairs using donor pairs to 54 pairs using BMD-matched pairs. Conclusion. BMD cannot be used to create comparable test groups unless sample size is increased substantially and paired statistics are no longer valid. Cite this article: Bone Joint Res 2014;3:317–20


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 48 - 53
1 Jan 2014
Solomon LB Hofstaetter JG Bolt MJ Howie DW

We investigated the detailed anatomy of the gluteus maximus, gluteus medius and gluteus minimus and their neurovascular supply in 22 hips in 11 embalmed adult Caucasian human cadavers. This led to the development of a surgical technique for an extended posterior approach to the hip and pelvis that exposes the supra-acetabular ilium and preserves the glutei during revision hip surgery. Proximal to distal mobilisation of the gluteus medius from the posterior gluteal line permits exposure and mobilisation of the superior gluteal neurovascular bundle between the sciatic notch and the entrance to the gluteus medius, enabling a wider exposure of the supra-acetabular ilium. This technique was subsequently used in nine patients undergoing revision total hip replacement involving the reconstruction of nine Paprosky 3B acetabular defects, five of which had pelvic discontinuity. Intra-operative electromyography showed that the innervation of the gluteal muscles was not affected by surgery. Clinical follow-up demonstrated good hip abduction function in all patients. These results were compared with those of a matched cohort treated through a Kocher–Langenbeck approach. Our modified approach maximises the exposure of the ilium above the sciatic notch while protecting the gluteal muscles and their neurovascular bundle. Cite this article: Bone Joint J 2014;96-B:48–53


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 168 - 172
1 Feb 2006
Mayr E de la Barrera JM Eller G Bach C Nogler M

In navigated total hip arthroplasty, the pelvis and the femur are tracked by means of rigid bodies fixed directly to the bones. Exact tracking throughout the procedure requires that the connection between the marker and bone remains stable in terms of translation and rotation. We carried out a cadaver study to compare the intra-operative stability of markers consisting of an anchoring screw with a rotational stabiliser and of pairs of pins and wires of different diameters connected with clamps. These devices were tested at different locations in the femur. Three human cadavers were placed supine on an operating table, with a reference marker positioned in the area of the greater trochanter. K-wires (3.2 mm), Steinman pins (3 and 4 mm), Apex pins (3 and 4 mm), and a standard screw were used as fixation devices. They were positioned medially in the proximal third of the femur, ventrally in the middle third and laterally in the distal portion. In six different positions of the leg, the spatial positions were recorded with a navigation system. Compared with the standard single screw, with the exception of the 3 mm Apex pins, the two-pin systems were associated with less movement of the marker and could be inserted less invasively. With the knee flexed to 90° and the dislocated hip rotated externally until the lower leg was parallel to the table (figure-four position), all the anchoring devices showed substantial deflection of 1.5° to 2.5°. The most secure area for anchoring markers was the lateral aspect of the femur


Bone & Joint Research
Vol. 10, Issue 9 | Pages 594 - 601
24 Sep 2021
Karunaseelan KJ Dandridge O Muirhead-Allwood SK van Arkel RJ Jeffers JRT

Aims

In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading.

Methods

Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule.


Bone & Joint Open
Vol. 2, Issue 8 | Pages 611 - 617
10 Aug 2021
Kubik JF Bornes TD Klinger CE Dyke JP Helfet DL

Aims

Surgical treatment of young femoral neck fractures often requires an open approach to achieve an anatomical reduction. The application of a calcar plate has recently been described to aid in femoral neck fracture reduction and to augment fixation. However, application of a plate may potentially compromise the regional vascularity of the femoral head and neck. The purpose of this study was to investigate the effect of calcar femoral neck plating on the vascularity of the femoral head and neck.

Methods

A Hueter approach and capsulotomy were performed bilaterally in six cadaveric hips. In the experimental group, a one-third tubular plate was secured to the inferomedial femoral neck at 6:00 on the clockface. The contralateral hip served as a control with surgical approach and capsulotomy without fixation. Pre- and post-contrast MRI was then performed to quantify signal intensity in the femoral head and neck. Qualitative assessment of the terminal arterial branches to the femoral head, specifically the inferior retinacular artery (IRA), was also performed.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 386 - 393
1 Jul 2020
Doyle R van Arkel RJ Muirhead-Allwood S Jeffers JRT

Aims

Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component?

Methods

A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1585 - 1592
1 Dec 2019
Logishetty K Rudran B Cobb JP

Aims

Arthroplasty skills need to be acquired safely during training, yet operative experience is increasingly hard to acquire by trainees. Virtual reality (VR) training using headsets and motion-tracked controllers can simulate complex open procedures in a fully immersive operating theatre. The present study aimed to determine if trainees trained using VR perform better than those using conventional preparation for performing total hip arthroplasty (THA).

Patients and Methods

A total of 24 surgical trainees (seven female, 17 male; mean age 29 years (28 to 31)) volunteered to participate in this observer-blinded 1:1 randomized controlled trial. They had no prior experience of anterior approach THA. Of these 24 trainees, 12 completed a six-week VR training programme in a simulation laboratory, while the other 12 received only conventional preparatory materials for learning THA. All trainees then performed a cadaveric THA, assessed independently by two hip surgeons. The primary outcome was technical and non-technical surgical performance measured by a THA-specific procedure-based assessment (PBA). Secondary outcomes were step completion measured by a task-specific checklist, error in acetabular component orientation, and procedure duration.


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 822 - 831
1 Jul 2020
Kuroda Y Saito M Çınar EN Norrish A Khanduja V

Aims

This paper aims to review the evidence for patient-related factors associated with less favourable outcomes following hip arthroscopy.

Methods

Literature reporting on preoperative patient-related risk factors and outcomes following hip arthroscopy were systematically identified from a computer-assisted literature search of Pubmed (Medline), Embase, and Cochrane Library using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and a scoping review.


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 730 - 735
1 Jun 2016
Bsat S Frei H Beaulé PE

The acetabular labrum is a soft-tissue structure which lines the acetabular rim of the hip joint. Its role in hip joint biomechanics and joint health has been of particular interest over the past decade. In normal hip joint biomechanics, the labrum is crucial in retaining a layer of pressurised intra-articular fluid for joint lubrication and load support/distribution. Its seal around the femoral head is further regarded as a contributing to hip stability through its suction effect. The labrum itself is also important in increasing contact area thereby reducing contact stress. Given the labrum’s role in normal hip joint biomechanics, surgical techniques for managing labral damage are continuously evolving as our understanding of its anatomy and function continue to progress. The current paper aims to review the anatomy and biomechanical function of the labrum and how they are affected by differing surgical techniques.

Take home message: The acetabular labrum plays a critical role in hip function and maintaining and restoring its function during surgical intervention remain an essential goal.

Cite this article: Bone Joint J 2016;98-B:730–5.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1582 - 1588
1 Dec 2016
Dewar DC Lazaro LE Klinger CE Sculco PK Dyke JP Ni AY Helfet DL Lorich DG

Aims

We aimed to quantify the relative contributions of the medial femoral circumflex artery (MFCA) and lateral femoral circumflex artery (LFCA) to the arterial supply of the head and neck of the femur.

Materials and Methods

We acquired ten cadaveric pelvises. In each of these, one hip was randomly assigned as experimental and the other as a matched control. The MFCA and LFCA were cannulated bilaterally. The hips were designated LFCA-experimental or MFCA-experimental and underwent quantitative MRI using a 2 mm slice thickness before and after injection of MRI-contrast diluted 3:1 with saline (15 ml Gd-DTPA) into either the LFCA or MFCA. The contralateral control hips had 15 ml of contrast solution injected into the root of each artery. Next, the MFCA and LFCA were injected with a mixture of polyurethane and barium sulfate (33%) and their extra-and intra-arterial course identified by CT imaging and dissection.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 531 - 537
1 Nov 2016
Burgo FJ Mengelle DE Ozols A Fernandez C Autorino CM

Objectives

Studies reporting specifically on squeaking in total hip arthroplasty have focused on cementless, and not on hybrid, fixation. We hypothesised that the cement mantle of the femur might have a damping effect on the sound transmitted through the metal stem. The objective of this study was to test the effect of cement on sound propagation along different stem designs and under different fixation conditions.

Methods

An in vitro model for sound detection, composed of a mechanical suspension structure and a sound-registering electronic assembly, was designed. A pulse of sound in the audible range was propagated along bare stems and stems implanted in cadaveric bone femurs with and without cement. Two stems of different alloy and geometry were compared.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 26 - 30
1 Nov 2013
Fayad TE Khan MA Haddad FS

Young adults with hip pain secondary to femoroacetabular impingement (FAI) are rapidly being recognised as an important cohort of orthopaedic patients. Interest in FAI has intensified over the last decade since its recognition as a precursor to arthritis of the hip and the number of publications related to the topic has increased exponentially in the last decade. Although not all patients with abnormal hip morphology develop osteoarthritis (OA), those with FAI-related joint damage rapidly develop premature OA. There are no explicit diagnostic criteria or definitive indications for surgical intervention in FAI. Surgery for symptomatic FAI appears to be most effective in younger individuals who have not yet developed irreversible OA. The difficulty in predicting prognosis in FAI means that avoiding unnecessary surgery in asymptomatic individuals, while undertaking intervention in those that are likely to develop premature OA poses a considerable dilemma. FAI treatment in the past has focused on open procedures that carry a potential risk of complications.

Recent developments in hip arthroscopy have facilitated a minimally invasive approach to the management of FAI with few complications in expert hands. Acetabular labral preservation and repair appears to provide superior results when compared with debridement alone. Arthroscopic correction of structural abnormalities is increasingly becoming the standard treatment for FAI, however there is a paucity of high-level evidence comparing open and arthroscopic techniques in patients with similar FAI morphology and degree of associated articular cartilage damage. Further research is needed to develop an understanding of the natural course of FAI, the definitive indications for surgery and the long-term outcomes.

Cite this article: Bone Joint J 2013;95-B, Supple A:26–30.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 764 - 769
1 Jun 2013
Roche JJW Jones CDS Khan RJK Yates PJ

The piriformis muscle is an important landmark in the surgical anatomy of the hip, particularly the posterior approach for total hip replacement (THR). Standard orthopaedic teaching dictates that the tendon must be cut in to allow adequate access to the superior part of the acetabulum and the femoral medullary canal. However, in our experience a routine THR can be performed through a posterior approach without sacrificing this tendon.

We dissected the proximal femora of 15 cadavers in order to clarify the morphological anatomy of the piriformis tendon. We confirmed that the tendon attaches on the crest of the greater trochanter, in a position superior to the trochanteric fossa, away from the entry point for broaching the intramedullary canal during THR. The tendon attachment site encompassed the summit and medial aspect of the greater trochanter as well as a variable attachment to the fibrous capsule of the hip joint. In addition we dissected seven cadavers resecting all posterior attachments except the piriformis muscle and tendon in order to study their relations to the hip joint, as the joint was flexed. At flexion of 90° the piriformis muscle lay directly posterior to the hip joint.

The piriform fossa is a term used by orthopaedic surgeons to refer the trochanteric fossa and normally has no relation to the attachment site of the piriformis tendon. In hip flexion the piriformis lies directly behind the hip joint and might reasonably be considered to contribute to the stability of the joint.

We conclude that the anatomy of the piriformis muscle is often inaccurately described in the current surgical literature and terms are used and interchanged inappropriately.

Cite this article: Bone Joint J 2013;95-B:764–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1019 - 1024
1 Aug 2008
Cashin M Uhthoff H O’Neill M Beaulé PE

Damage to and repair of the acetabular labral-chondral complex are areas of clinical interest in the treatment of young adults with pain in the hip and in the prevention of degenerative arthritis of the hip. There are varying theories as to why most acetabular tears are located anterosuperiorly. We have studied the prenatal development of the human acetabular labral-chondral complex in 11 fetal hips, aged from eight weeks of gestation to term.

There were consistent differences between the anterior and posterior acetabular labral-chondral complex throughout all ages of gestation. The anterior labrum had a somewhat marginal attachment to the acetabular cartilage with an intra-articular projection. The posterior labrum was attached and continuous with the acetabular cartilage. Anteriorly, the labral-chondral transition zone was sharp and abrupt, but posteriorly it was gradual and interdigitated. The collagen fibres of the anterior labrum were arranged parallel to the labral-chondral junction, but at the posterior labrum they were aligned perpendicular to the junction.

We believe that in the anterior labrum the marginal attachment and the orientation of the collagen fibres parallel to the labral-chondral junction may render it more prone to damage than the posterior labrum in which the collagen fibres are anchored in the acetabular cartilage. The anterior intra-articular projection of the labrum should not be considered to be a pathological feature.