Advertisement for orthosearch.org.uk
Results 81 - 100 of 419
Results per page:
Bone & Joint Research
Vol. 5, Issue 9 | Pages 362 - 369
1 Sep 2016
Oba M Inaba Y Kobayashi N Ike H Tezuka T Saito T

Objectives. In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes. Patients and Methods. We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year. Results. Stovepipe models implanted with large-size stems had significantly lower equivalent stress on the proximal-medial area of the femur compared with champagne-flute and intermediate models, with a significant loss of BMD in the corresponding area at one year post-operatively. Conclusions. The stovepipe femurs required a large-size stem to obtain an optimal fit of the stem. The FEA result and post-operative BMD change of the femur suggest that the combination of a large-size Accolade TMZF stem and stovepipe femur may be associated with proximal stress shielding. Cite this article: M. Oba, Y. Inaba, N. Kobayashi, H. Ike, T. Tezuka, T. Saito. Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem. Bone Joint Res 2016;5:362–369. DOI: 10.1302/2046-3758.59.2000525


Bone & Joint Research
Vol. 5, Issue 11 | Pages 544 - 551
1 Nov 2016
Kim Y Bok DH Chang H Kim SW Park MS Oh JK Kim J Kim T

Objectives. Although vertebroplasty is very effective for relieving acute pain from an osteoporotic vertebral compression fracture, not all patients who undergo vertebroplasty receive the same degree of benefit from the procedure. In order to identify the ideal candidate for vertebroplasty, pre-operative prognostic demographic or clinico-radiological factors need to be identified. The objective of this study was to identify the pre-operative prognostic factors related to the effect of vertebroplasty on acute pain control using a cohort of surgically and non-surgically managed patients. Patients and Methods. Patients with single-level acute osteoporotic vertebral compression fracture at thoracolumbar junction (T10 to L2) were followed. If the patients were not satisfied with acute pain reduction after a three-week conservative treatment, vertebroplasty was recommended. Pain assessment was carried out at the time of diagnosis, as well as three, four, six, and 12 weeks after the diagnosis. The effect of vertebroplasty, compared with conservative treatment, on back pain (visual analogue score, VAS) was analysed with the use of analysis-of-covariance models that adjusted for pre-operative VAS scores. Results. A total of 342 patients finished the 12-week follow-up, and 120 patients underwent vertebroplasty (35.1%). The effect of vertebroplasty over conservative treatment was significant regardless of age, body mass index, medical comorbidity, previous fracture, pain duration, bone mineral density, degree of vertebral body compression, and canal encroachment. However, the effect of vertebroplasty was not significant at all time points in patients with increased sagittal vertical axis. Conclusions. For single-level acute osteoporotic vertebral compression fractures, the effect of vertebroplasty was less favourable in patients with increased sagittal vertical axis (> 5 cm) possible due to aggravation of kyphotic stress from walking imbalance. Cite this article: Y-C. Kim, D. H. Bok, H-G. Chang, S. W. Kim, M. S. Park, J. K. Oh, J. Kim, T-H. Kim. Increased sagittal vertical axis is associated with less effective control of acute pain following vertebroplasty. Bone Joint Res 2016;5:544–551. DOI: 10.1302/2046-3758.511.BJR-2016-0135.R1


Bone & Joint Research
Vol. 5, Issue 9 | Pages 419 - 426
1 Sep 2016
Leichtle CI Lorenz A Rothstock S Happel J Walter F Shiozawa T Leichtle UG

Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL). Materials and Methods. A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired t-test was used to compare the two screws within each vertebra. Results. Mean failure load was significantly greater for fenestrated cemented screws (+622 N; p ⩽ 0.001) and solid cemented screws (+460 N; p ⩽ 0.001) than for uncemented screws. There was no significant difference between the solid and fenestrated cemented screws (p = 0.5). In the lower thoracic vertebrae, 1 mL cement was enough to significantly increase failure load, while 3 mL led to further significant improvement in the upper thoracic, lower thoracic and lumbar regions. Conclusion. Conventional, solid pedicle screws augmented with high-viscosity cement provided comparable screw stability in pull-out testing to that of sophisticated and more expensive fenestrated screws. In terms of cement volume, we recommend the use of at least 1 mL in the thoracic and 3 mL in the lumbar spine. Cite this article: C. I. Leichtle, A. Lorenz, S. Rothstock, J. Happel, F. Walter, T. Shiozawa, U. G. Leichtle. Pull-out strength of cemented solid versus fenestrated pedicle screws in osteoporotic vertebrae. Bone Joint Res 2016;5:419–426


Bone & Joint 360
Vol. 1, Issue 5 | Pages 10 - 12
1 Oct 2012

The October 2012 Hip & Pelvis Roundup. 360. looks at: diagnosing the infected hip replacement; whether tranexamic acid has a low complication rate; the relationship between poor cementing technique and early failure of resurfacing; debridement and retention for the infected replacement; triple-tapered stems and bone mineral density; how early discharge can be bad for your sleep; an updated QFracture algorithm to predict the risk of an osteoporotic fracture; and local infiltration analgesia and total hip replacement


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1378 - 1384
1 Oct 2014
Weiser L Korecki MA Sellenschloh K Fensky F Püschel K Morlock MM Rueger JM Lehmann W

It is becoming increasingly common for a patient to have ipsilateral hip and knee replacements. The inter-prosthetic (IP) distance, the distance between the tips of hip and knee prostheses, has been thought to be associated with an increased risk of IP fracture. Small gap distances are generally assumed to act as stress risers, although there is no real biomechanical evidence to support this. The purpose of this study was to evaluate the influence of IP distance, cortical thickness and bone mineral density on the likelihood of an IP femoral fracture. A total of 18 human femur specimens were randomised into three groups by bone density and cortical thickness. For each group, a defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing the appropriate lengths of component. The maximum fracture strength was determined using a four-point bending test. The fracture force of all three groups was similar (p = 0.498). There was a highly significant correlation between the cortical area and the fracture strength (r = 0.804, p <  0.001), whereas bone density showed no influence. This study suggests that the IP distance has little influence on fracture strength in IP femoral fractures: the thickness of the cortex seems to be the decisive factor. Cite this article: Bone Joint J 2014;96-B:1378–84


Bone & Joint Research
Vol. 5, Issue 11 | Pages 538 - 543
1 Nov 2016
Weeks BK Hirsch R Nogueira RC Beck BR

Objectives. The aim of the current study was to assess whether calcaneal broadband ultrasound attenuation (BUA) can predict whole body and regional dual-energy x-ray absorptiometry (DXA)-derived bone mass in healthy, Australian children and adolescents at different stages of maturity. Methods. A total of 389 boys and girls across a wide age range (four to 18 years) volunteered to participate. The estimated age of peak height velocity (APHV) was used to classify children into pre-, peri-, and post-APHV groups. BUA was measured at the non-dominant heel with quantitative ultrasonometry (QUS) (Lunar Achilles Insight, GE), while bone mineral density (BMD) and bone mineral content (BMC) were examined at the femoral neck, lumbar spine and whole body (DXA, XR-800, Norland). Associations between BUA and DXA-derived measures were examined with Pearson correlations and linear regression. Participants were additionally ranked in quartiles for QUS and DXA measures in order to determine agreement in rankings. Results. For the whole sample, BUA predicted 29% of the study population variance in whole body BMC and BMD, 23% to 24% of the study population variance in lumbar spine BMC and BMD, and 21% to 24% of the variance in femoral neck BMC and BMD (p < 0.001). BUA predictions were strongest for the most mature participants (pre-APHV R. 2. = 0.03 to 0.19; peri-APHV R. 2. = 0.05 to 0.17; post-APHV R. 2. = 0.18 to 0.28) and marginally stronger for girls (R. 2. = 0.25-0.32, p < 0.001) than for boys (R. 2. = 0.21-0.27, p < 0.001). Agreement in quartile rankings between QUS and DXA measures of bone mass was generally poor (27.3% to 38.2%). Conclusion. Calcaneal BUA has a weak to moderate relationship with DXA measurements of bone mass in children, and has a tendency to misclassify children on the basis of quartile rankings. Cite this article: B. K. Weeks, R. Hirsch, R. C. Nogueira, B. R. Beck. Is calcaneal broadband ultrasound attenuation a valid index of dual-energy x-ray absorptiometry-derived bone mass in children? Bone Joint Res 2016;5:538–543. DOI: 10.1302/2046-3758.511.BJR-2016-0116.R1


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1455 - 1462
1 Nov 2018
Munro JT Millar JS Fernandez JW Walker CG Howie DW Shim VB

Aims. Osteolysis, secondary to local and systemic physiological effects, is a major challenge in total hip arthroplasty (THA). While osteolytic defects are commonly observed in long-term follow-up, how such lesions alter the distribution of stress is unclear. The aim of this study was to quantitatively describe the biomechanical implication of such lesions by performing subject-specific finite-element (FE) analysis on patients with osteolysis after THA. Patients and Methods. A total of 22 hemipelvis FE models were constructed in order to assess the transfer of load in 11 patients with osteolysis around the acetabular component of a THA during slow walking and a fall onto the side. There were nine men and two women. Their mean age was 69 years (55 to 81) at final follow-up. Changes in peak stress values and loads to fracture in the presence of the osteolytic defects were measured. Results. The von Mises stresses were increased in models of those with and those without defects for both loading scenarios. Although some regions showed increases in stress values of up to 100%, there was only a moderate 11.2% increase in von Mises stress in the series as a whole. The site of fracture changed in some models with lowering of the load to fracture by 500 N. The most common site of fracture was the pubic ramus. This was more frequent in models with larger defects. Conclusion. We conclude that cancellous defects cause increases in stress within cortical structures. However, these are likely to lead to a modest decrease in the load to fracture if the defect is large (> 20cm. 3. ) or if the patient is small with thin cortical structures and low bone mineral density. Cite this article: Bone Joint J 2018;100-B:1455–62


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 365 - 371
1 Apr 2019
Nam D Salih R Nahhas CR Barrack RL Nunley RM

Aims. Modular dual mobility (DM) prostheses in which a cobalt-chromium liner is inserted into a titanium acetabular shell (vs a monoblock acetabular component) have the advantage of allowing supplementary screw fixation, but the potential for corrosion between the liner and acetabulum has raised concerns. While DM prostheses have shown improved stability in patients deemed ‘high-risk’ for dislocation undergoing total hip arthroplasty (THA), their performance in young, active patients has not been reported. This study’s purpose was to assess clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) in young, active patients receiving a modular DM acetabulum and recently introduced titanium, proximally coated, tapered femoral stem design. Patients and Methods. This was a prospective study of patients between 18 and 65 years of age, with a body mass index (BMI) < 35 kg/m. 2. and University of California at Los Angeles (UCLA) activity score > 6, who received a modular cobalt-chromium acetabular liner, highly crosslinked polyethylene mobile bearing, and cementless titanium femoral stem for their primary THA. Patients with a history of renal disease and metal hardware elsewhere in the body were excluded. A total of 43 patients (30 male, 13 female; mean age 52.6 years (. sd. 6.5)) were enrolled. All patients had a minimum of two years’ clinical follow-up. Patient-reported outcome measures, whole blood metal ion levels (ug/l), and periprosthetic femoral BMD were measured at baseline, as well as at one and two years postoperatively. Power analysis indicated 40 patients necessary to demonstrate a five-fold increase in cobalt levels from baseline (alpha = 0.05, beta = 0.80). A mixed model with repeated measures was used for statistical analysis. Results. Mean Harris Hip Scores improved from 54.1 (. sd. 20.5) to 91.2 (. sd. 10.8) at two years postoperatively (p < 0.001). All patients had radiologically well-fixed components, no patients experienced any instability, and no patients required any further intervention. Mean cobalt levels increased from 0.065 ug/l (. sd. 0.03) preoperatively to 0.30 ug/l (. sd. 0.51) at one year postoperatively (p = 0.01) but decreased at two years postoperatively to 0.16 ug/l (. sd. 0.23; p = 0.2). Four patients (9.3%) had a cobalt level outside the reference range (0.03 ug/l to 0.29 ug/l) at two years postoperatively, with values from 0.32 ug/l to 0.94 ug/l. The mean femoral BMD ratio was maintained in Gruen zones 2 to 7 at both one and two years postoperatively using this stem design. At two years postoperatively, mean BMD in the medial calcar was 101.5% of the baseline value. Conclusion. Use of a modular DM prosthesis and cementless, tapered femoral stem has shown encouraging results in young, active patients undergoing primary THA. Elevation in mean cobalt levels and the presence of four patients outside the reference range at two years postoperatively demonstrates the necessity of continued surveillance in this cohort. Cite this article: Bone Joint J 2019;101-B:365–371


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 421 - 425
1 Mar 2005
Blom AW Cunningham JL Hughes G Lawes TJ Smith N Blunn G Learmonth ID Goodship AE

This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures


Objectives. This investigation sought to advance the work published in our prior biomechanical study (Journal of Orthopaedic Research, 2016). We specifically sought to determine whether there are additional easy-to-measure parameters on plain radiographs of the proximal humerus that correlate more strongly with ultimate fracture load, and whether a parameter resembling the Dorr strength/quality characterisation of proximal femurs can be applied to humeri. Materials and Methods. A total of 33 adult humeri were used from a previous study where we quantified bone mineral density of the proximal humerus using radiographs and dual-energy x-ray absorptiometry (DEXA), and regional mean cortical thickness and cortical index using radiographs. The bones were fractured in a simulated backwards fall with the humeral head loaded at 2 mm/second via a frustum angled at 30° from the long axis of the bone. Correlations were assessed with ultimate fracture load and these new parameters: cortical index expressed in areas (“areal cortical index”) of larger regions of the diaphysis; the canal-to-calcar ratio used analogous to its application in proximal femurs; and the recently described medial cortical ratio. Results. The three new parameters showed the following correlations with ultimate fracture load: areal cortical index (r = 0.56, p < 0.001); canal-to-calcar ratio (r = 0.38, p = 0.03); and medial cortical ratio (r = 0.49, p < 0.005). These correlations were weaker when compared with those that we previously reported: mean cortical thickness of the proximal diaphysis versus ultimate fracture load (r = 0.71; p < 0.001); and mean density in the central humeral head versus ultimate fracture load (r = 0.70; p < 0.001). Conclusion. Simple-to-measure radiographic parameters of the proximal humerus reported previously are more useful in predicting ultimate fracture load than are areal cortical index, canal-to-calcar ratio, and medial cortical ratio. Cite this article: J. G. Skedros, C. S. Mears, W. Z. Burkhead. Ultimate fracture load of cadaver proximal humeri correlates more strongly with mean combined cortical thickness than with areal cortical index, DEXA density, or canal-to-calcar ratio. Bone Joint Res 2017;6:1–7. DOI: 10.1302/2046-3758.61.BJR-2016-0145.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 455 - 459
1 Apr 2006
Shetty NR Hamer AJ Kerry RM Stockley I Eastell R Wilkinson JM

The aims of this study were to examine the repeatability of measurements of bone mineral density (BMD) around a cemented polyethylene Charnley acetabular component using dual-energy x-ray absorptiometry and to determine the longitudinal pattern of change in BMD during the first 24 months after surgery. The precision of measurements of BMD in 19 subjects ranged from 7.7% to 10.8% between regions, using a four-region-of-interest model. A longitudinal study of 27 patients demonstrated a transient decrease in net pelvic BMD during the first 12 months, which recovered to baseline at 24 months. The BMD in the region medial to the dome of the component reduced by between 7% and 10% during the first three months, but recovered to approximately baseline values by two years. Changes in BMD in the pelvis around cemented acetabular components may be measured using dual-energy x-ray absorptiometry. Bone loss after insertion of a cemented Charnley acetabular component is small, transient and occurs mainly at the medial wall of the acetabulum. After two years, bone mass returns to baseline values, with a pattern suggesting a uniform transmission of load to the acetabulum


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1099 - 1105
1 Aug 2016
Weiser L Dreimann M Huber G Sellenschloh K Püschel K Morlock MM Rueger JM Lehmann W

Aims. Loosening of pedicle screws is a major complication of posterior spinal stabilisation, especially in the osteoporotic spine. Our aim was to evaluate the effect of cement augmentation compared with extended dorsal instrumentation on the stability of posterior spinal fixation. Materials and Methods. A total of 12 osteoporotic human cadaveric spines (T11-L3) were randomised by bone mineral density into two groups and instrumented with pedicle screws: group I (SHORT) separated T12 or L2 and group II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were augmented with cement unilaterally in each vertebra. Fatigue testing was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz) load with stepwise increasing peak force. Results. Augmentation showed no significant increase in the mean cycles to failure and fatigue force (SHORT p = 0.067; EXTENDED p = 0.239). Extending the instrumentation resulted in a significantly increased number of cycles to failure and a significantly higher fatigue force compared with the SHORT instrumentation (EXTENDED non-augmented + 76%, p < 0.001; EXTENDED augmented + 87%, p < 0.001). Conclusion. The stabilising effect of cement augmentation of pedicle screws might not be as beneficial as expected from biomechanical pull-out tests. Lengthening the dorsal instrumentation results in a much higher increase of stability during fatigue testing in the osteoporotic spine compared with cement augmentation. Cite this article: Bone Joint J 2016;98-B:1099–1105


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 525 - 530
1 Apr 2011
Tobita K Ohnishi I Matsumoto T Ohashi S Bessho M Kaneko M Matsuyama J Nakamura K

We evaluated the effect of low-intensity pulsed ultrasound stimulation (LIPUS) on the remodelling of callus in a rabbit gap-healing model by bone morphometric analyses using three-dimensional quantitative micro-CT. A tibial osteotomy with a 2 mm gap was immobilised by rigid external fixation and LIPUS was applied using active translucent devices. A control group had sham inactive transducers applied. A region of interest of micro-CT was set at the centre of the osteotomy gap with a width of 1 mm. The morphometric parameters used for evaluation were the volume of mineralised callus (BV) and the volumetric bone mineral density of mineralised tissue (mBMD). The whole region of interest was measured and subdivided into three zones as follows: the periosteal callus zone (external), the medullary callus zone (endosteal) and the cortical gap zone (intercortical). The BV and mBMD were measured for each zone. In the endosteal area, there was a significant increase in the density of newly formed callus which was subsequently diminished by bone resorption that overwhelmed bone formation in this area as the intramedullary canal was restored. In the intercortical area, LIPUS was considered to enhance bone formation throughout the period of observation. These findings indicate that LIPUS could shorten the time required for remodelling and enhance the mineralisation of callus


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1433 - 1438
1 Oct 2012
Lam W Guo X Leung K Kwong KSC

This study was designed to test the hypothesis that the sensory innervation of bone might play an important role in sensing and responding to low-intensity pulsed ultrasound and explain its effect in promoting fracture healing. In 112 rats a standardised mid-shaft tibial fracture was created, supported with an intramedullary needle and divided into four groups of 28. These either had a sciatic neurectomy or a patellar tendon resection as control, and received the ultrasound or not as a sham treatment. Fracture union, callus mineralisation and remodelling were assessed using plain radiography, peripheral quantitative computed tomography and histomorphology. Daily ultrasound treatment significantly increased the rate of union and the volumetric bone mineral density in the fracture callus in the neurally intact rats (p = 0.025), but this stimulating effect was absent in the rats with sciatic neurectomy. Histomorphology demonstrated faster maturation of the callus in the group treated with ultrasound when compared with the control group. The results supported the hypothesis that intact innervation plays an important role in allowing low-intensity pulsed ultrasound to promote fracture healing


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 337 - 345
1 Mar 2015
Jaroma AVJ Soininvaara TA Kröger H

Total knee arthroplasty (TKA) is known to lead to a reduction in periprosthetic bone mineral density (BMD). In theory, this may lead to migration, instability and aseptic loosening of the prosthetic components. Bisphosphonates inhibit bone resorption and may reduce this loss in BMD. We hypothesised that treatment with bisphosphonates and calcium would lead to improved BMD and clinical outcomes compared with treatment with calcium supplementation alone following TKA. A total of 26 patients, (nine male and 17 female, mean age 67 years) were prospectively randomised into two study groups: alendronate and calcium (bisphosphonate group, n = 14) or calcium only (control group, n = 12). Dual energy X-ray absorptiometry (DEXA) measurements were performed post-operatively, and at three months, six months, one, two, four, and seven years post-operatively. . Mean femoral metaphyseal BMD was significantly higher in the bisphosphonate group compared with controls, up to four years following surgery in some areas of the femur (p = 0.045). BMD was observed to increase in the lateral tibial metaphysis in the bisphosphonate group until seven years (p = 0.002), and was significantly higher than that observed in the control group throughout (p = 0.024). There were no significant differences between the groups in the central femoral metaphyseal, tibial medial metaphyseal or diaphyseal regions of interest (ROI) of either the femur or tibia. Bisphosphonate treatment after TKA may be of benefit for patients with poor bone quality. However, further studies with a larger number of patients are necessary to assess whether this is clinically beneficial. Cite this article: Bone Joint J 2015;97-B:337–45


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1175 - 1181
1 Sep 2018
Benca E Willegger M Wenzel F Hirtler L Zandieh S Windhager R Schuh R

Aims. The traditional transosseus flexor hallucis longus (FHL) tendon transfer for patients with Achilles tendinopathy requires two incisions to harvest a long tendon graft. The use of a bio-tenodesis screw enables a short graft to be used and is less invasive, but lacks supporting evidence about its biomechanical behaviour. We aimed, in this study, to compare the strength of the traditional transosseus tendon-to-tendon fixation with tendon-to-bone fixation using a tenodesis screw, in cyclical loading and ultimate load testing. Materials and Methods. Tendon grafts were undertaken in 24 paired lower-leg specimens and randomly assigned in two groups using fixation with a transosseus suture (suture group) or a tenodesis screw (screw group). The biomechanical behaviour was evaluated using cyclical and ultimate loading tests. The Student’s t-test was performed to assess statistically significant differences in bone mineral density (BMD), displacement, the slope of the load-displacement curves, and load to failure. Results. The screw group showed less displacement (loosening) during cyclical loading, which was significant during 300, 500, 600, 700, 800, 900, and 1000 cycles (p < 0.05: other cycles: 0.079 < p < 0.402). Compared with the suture group, the screw group had higher mean ultimate load values (133.6 N, . sd. 73.5 vs 110.1 N,. sd. 46.2; p = 0.416). Conclusion. Fixation of the FHL tendon with a tenodesis screw enables a less invasive procedure to be undertaken and shows similar biomechanical behaviour and primary strength compared with fixation using a transosseus suture. Cite this article: Bone Joint J 2018;100-B:1175–81


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 692 - 695
1 May 2006
Karataglis D Kapetanos G Lontos A Christodoulou A Christoforides J Pournaras J

The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws


Bone & Joint Research
Vol. 12, Issue 7 | Pages 423 - 432
6 Jul 2023
Xie H Wang N He H Yang Z Wu J Yang T Wang Y

Aims

Previous studies have suggested that selenium as a trace element is involved in bone health, but findings related to the specific effect of selenium on bone health remain inconclusive. Thus, we performed a meta-analysis by including all the relevant studies to elucidate the association between selenium status (dietary intake or serum selenium) and bone health indicators (bone mineral density (BMD), osteoporosis (OP), or fracture).

Methods

PubMed, Embase, and Cochrane Library were systematically searched to retrieve relevant articles published before 15 November 2022. Studies focusing on the correlation between selenium and BMD, OP, or fracture were included. Effect sizes included regression coefficient (β), weighted mean difference (WMD), and odds ratio (OR). According to heterogeneity, the fixed-effect or random-effect model was used to assess the association between selenium and bone health.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 245 - 255
3 Apr 2023
Ryu S So J Ha Y Kuh S Chin D Kim K Cho Y Kim K

Aims

To determine the major risk factors for unplanned reoperations (UROs) following corrective surgery for adult spinal deformity (ASD) and their interactions, using machine learning-based prediction algorithms and game theory.

Methods

Patients who underwent surgery for ASD, with a minimum of two-year follow-up, were retrospectively reviewed. In total, 210 patients were included and randomly allocated into training (70% of the sample size) and test (the remaining 30%) sets to develop the machine learning algorithm. Risk factors were included in the analysis, along with clinical characteristics and parameters acquired through diagnostic radiology.


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 5 | Pages 815 - 819
1 Sep 1995
Cohen B Rushton N

We measured bone mineral density (BMD) in the proximal femur by dual-energy X-ray absorptiometry (DEXA) in 20 patients after cemented total hip arthroplasty over a period of one year. We found a statistically significant reduction in periprosthetic BMD after six months on the medial side and on the lateral side adjacent to the mid and distal thirds of the prosthesis. At one year after operation there was a mean 6.7% reduction in BMD in the region of the calcar and a mean 5.3% increase in BMD in the femoral shaft distal to the tip of the implant. These changes reflect a pattern of reduced stress in the proximal femur and increased stress around the tip of the prosthesis. They support current concepts of bone remodelling in the proximal femur in response to prosthetic implantation