Advertisement for orthosearch.org.uk
Results 61 - 80 of 82
Results per page:
Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.

Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.


Bone & Joint Research
Vol. 5, Issue 2 | Pages 52 - 60
1 Feb 2016
Revell PA Matharu GS Mittal S Pynsent PB Buckley CD Revell MP

Objectives

T-cells are considered to play an important role in the inflammatory response causing arthroplasty failure. The study objectives were to investigate the composition and distribution of CD4+ T-cell phenotypes in the peripheral blood (PB) and synovial fluid (SF) of patients undergoing revision surgery for failed metal-on-metal (MoM) and metal-on-polyethylene (MoP) hip arthroplasties, and in patients awaiting total hip arthroplasty.

Methods

In this prospective case-control study, PB and SF were obtained from 22 patients (23 hips) undergoing revision of MoM (n = 14) and MoP (n = 9) hip arthroplasties, with eight controls provided from primary hip osteoarthritis cases awaiting arthroplasty. Lymphocyte subtypes in samples were analysed using flow cytometry.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1144 - 1151
1 Aug 2015
Waki T Lee SY Niikura T Iwakura T Dogaki Y Okumachi E Kuroda R Kurosaka M

MicroRNAs (miRNAs ) are small non-coding RNAs that regulate gene expression. We hypothesised that the functions of certain miRNAs and changes to their patterns of expression may be crucial in the pathogenesis of nonunion. Healing fractures and atrophic nonunions produced by periosteal cauterisation were created in the femora of 94 rats, with 1:1 group allocation. At post-fracture days three, seven, ten, 14, 21 and 28, miRNAs were extracted from the newly generated tissue at the fracture site. Microarray and real-time polymerase chain reaction (PCR) analyses of day 14 samples revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p, were highly upregulated in nonunion. Real-time PCR analysis further revealed that, in nonunion, the expression levels of all five of these miRNAs peaked on day 14 and declined thereafter.

Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p may play an important role in the development of nonunion. These findings add to the understanding of the molecular mechanism for nonunion formation and may lead to the development of novel therapeutic strategies for its treatment.

Cite this article: Bone Joint J 2015; 97-B:1144–51.


Bone & Joint 360
Vol. 5, Issue 5 | Pages 19 - 21
1 Oct 2016


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1132 - 1137
1 Aug 2016
Lawendy A Bihari A Sanders DW Badhwar A Cepinskas G

Aims

Compartment syndrome results from increased intra-compartmental pressure (ICP) causing local tissue ischaemia and cell death, but the systemic effects are not well described. We hypothesised that compartment syndrome would have a profound effect not only on the affected limb, but also on remote organs.

Methods

Using a rat model of compartment syndrome, its systemic effects on the viability of hepatocytes and on inflammation and circulation were directly visualised using intravital video microscopy.


Bone & Joint 360
Vol. 2, Issue 6 | Pages 34 - 36
1 Dec 2013

The December 2013 Research Roundup360 looks at: Inflammation implicated in FAI; Ponseti and effective teaching; Unicompartmental knee design and tibial strain; Bisphosphonates and fracture healing; Antibiosis in cement; Zoledronic acid improves primary stability in revision?; Osteoporotic fractures revisited; and electroarthrography for monitoring of cartilage degeneration


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.


Bone & Joint 360
Vol. 2, Issue 2 | Pages 33 - 35
1 Apr 2013

The April 2013 Research Roundup360 looks at: when the ‘residency cake’ is done; steroids, stem cells and tendons; what exactly is osteoarthritis; platelet-rich plasma; CRPS; d-Dimer for DVT; reducing bacterial adhesion; and fin or limb?


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 6 - 13
1 Jan 2016
Cheung AC Banerjee S Cherian JJ Wong F Butany J Gilbert C Overgaard C Syed K Zywiel MG Jacobs JJ Mont MA

Recently, the use of metal-on-metal articulations in total hip arthroplasty (THA) has led to an increase in adverse events owing to local soft-tissue reactions from metal ions and wear debris. While the majority of these implants perform well, it has been increasingly recognised that a small proportion of patients may develop complications secondary to systemic cobalt toxicity when these implants fail. However, distinguishing true toxicity from benign elevations in cobalt ion levels can be challenging.

The purpose of this two part series is to review the use of cobalt alloys in THA and to highlight the following related topics of interest: mechanisms of cobalt ion release and their measurement, definitions of pathological cobalt ion levels, and the pathophysiology, risk factors and treatment of cobalt toxicity. Historically, these metal-on-metal arthroplasties are composed of a chromium-cobalt articulation.

The release of cobalt is due to the mechanical and oxidative stresses placed on the prosthetic joint. It exerts its pathological effects through direct cellular toxicity.

This manuscript will highlight the pathophysiology of cobalt toxicity in patients with metal-on-metal hip arthroplasties.

Take home message: Patients with new or evolving hip symptoms with a prior history of THA warrant orthopaedic surgical evaluation. Increased awareness of the range of systemic symptoms associated with cobalt toxicity, coupled with prompt orthopaedic intervention, may forestall the development of further complications.

Cite this article: Bone Joint J 2016;98-B:6–13.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives

The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics.

Methods

Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant).


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 933 - 938
1 Jul 2015
Sola M Dahners L Weinhold P Svetkey van der Horst A Kallianos S Flood D

This in vivo controlled laboratory study was performed to evaluate various intra-articular clinical injection regimes that might be less toxic than some in vitro studies suggest. We hypothesised that low-concentration, preservative-free, pH-balanced agents would be less toxic than high-concentration non-pH-balanced agents with preservatives, and that injections of individual agents are less toxic than combined injections. The left knees of 12- to 13-week-old Sprague–Dawley rats were injected once with eight different single agents, including low and high concentrations of ropivacaine and triamcinolone, alone and in combination, as well as negative and positive controls. The rats were killed at one week or five months, and live–dead staining was performed to quantify the death of chondrocytes. All injections except pH-balanced 0.2% ropivacaine combined with preservative-free 1 mg/ml triamcinolone acetonide resulted in statistically significant decreases in chondrocyte viability, compared with control knees, after one week and five months (p < 0.001). After one week there was no significant difference in viability between 0.2% and 0.5% ropivacaine; however, 4 mg/ml triamcinolone resulted in a lower viability than 1 mg/ml triamcinolone.

Although many agents commonly injected into joints are chondrotoxic, in this in vivo study diluting preservative-free 10 mg/ml triamcinolone 1:9 in 0.2% pH-balanced ropivacaine resulted in low toxicity.

Cite this article: Bone Joint J 2015; 97-B:933–8.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 539 - 543
1 Apr 2015
Lawendy A Bihari A Sanders DW McGarr G Badhwar A Cepinskas G

Compartment syndrome, a devastating consequence of limb trauma, is characterised by severe tissue injury and microvascular perfusion deficits. We hypothesised that leucopenia might provide significant protection against microvascular dysfunction and preserve tissue viability. Using our clinically relevant rat model of compartment syndrome, microvascular perfusion and tissue injury were directly visualised by intravital video microscopy in leucopenic animals. We found that while the tissue perfusion was similar in both groups (38.8% (standard error of the mean (sem) 7.1), 36.4% (sem 5.7), 32.0% (sem 1.7), and 30.5% (sem 5.35) continuously-perfused capillaries at 45, 90, 120 and 180 minutes compartment syndrome, respectively versus 39.2% (sem 8.6), 43.5% (sem 8.5), 36.6% (sem 1.4) and 50.8% (sem 4.8) at 45, 90, 120 and 180 minutes compartment syndrome, respectively in leucopenia), compartment syndrome-associated muscle injury was significantly decreased in leucopenic animals (7.0% (sem 2.0), 7.0%, (sem 1.0), 9.0% (sem 1.0) and 5.0% (sem 2.0) at 45, 90, 120 and 180 minutes of compartment syndrome, respectively in leucopenia group versus 18.0% (sem 4.0), 23.0% (sem 4.0), 32.0% (sem 7.0), and 20.0% (sem 5.0) at 45, 90, 120 and 180 minutes of compartment syndrome in control, p = 0.0005). This study demonstrates that the inflammatory process should be considered central to the understanding of the pathogenesis of cellular injury in compartment syndrome.

Cite this article: Bone Joint J 2015;97-B:539–43


Bone & Joint Research
Vol. 1, Issue 7 | Pages 158 - 166
1 Jul 2012
Dean BJF Franklin SL Carr AJ

Introduction

The pathogenesis of rotator cuff disease (RCD) is complex and not fully understood. This systematic review set out to summarise the histological and molecular changes that occur throughout the spectrum of RCD.

Methods

We conducted a systematic review of the scientific literature with specific inclusion and exclusion criteria.


Bone & Joint Research
Vol. 3, Issue 3 | Pages 82 - 88
1 Mar 2014
Abdel MP Morrey ME Barlow JD Grill DE Kolbert CP An KN Steinmann SP Morrey BF Sanchez-Sotelo J

Objectives

The goal of this study was to determine whether intra-articular administration of the potentially anti-fibrotic agent decorin influences the expression of genes involved in the fibrotic cascade, and ultimately leads to less contracture, in an animal model.

Methods

A total of 18 rabbits underwent an operation on their right knees to form contractures. Six limbs in group 1 received four intra-articular injections of decorin; six limbs in group 2 received four intra-articular injections of bovine serum albumin (BSA) over eight days; six limbs in group 3 received no injections. The contracted limbs of rabbits in group 1 were biomechanically and genetically compared with the contracted limbs of rabbits in groups 2 and 3, with the use of a calibrated joint measuring device and custom microarray, respectively.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1309 - 1319
1 Oct 2005
Hall S


Bone & Joint 360
Vol. 2, Issue 4 | Pages 22 - 24
1 Aug 2013

The August 2013 Trauma Roundup360 looks at: reverse oblique fractures do better with a cephalomedullary device; locking screws confer no advantage in tibial plateau fractures; it’s all about the radius of curvature; radius of curvature revisited; radial head replacement in complex elbow reconstruction; stem cells in early fracture haematoma; heterotrophic ossification in forearms; and Boston in perspective.


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1521 - 1526
1 Nov 2013
Kolk A Auw Yang KG Tamminga R van der Hoeven H

The aim of this study was to determine the effect of radial extracorporeal shock-wave therapy (rESWT) on patients with chronic tendinitis of the rotator cuff. This was a randomised controlled trial in which 82 patients (mean age 47 years (24 to 67)) with chronic tendinitis diagnosed clinically were randomly allocated to a treatment group who received low-dose rESWT (three sessions at an interval 10 to 14 days, 2000 pulses, 0.11 mJ/mm2, 8 Hz) or to a placebo group, with a follow-up of six months. The patients and the treating orthopaedic surgeon, who were both blinded to the treatment, evaluated the results. A total of 44 patients were allocated to the rESWT group and 38 patients to the placebo group. A visual analogue scale (VAS) score for pain, a Constant–Murley (CMS) score and a simple shoulder test (SST) score significantly improved in both groups at three and six months compared with baseline (all p ≤ 0.012). The mean VAS was similar in both groups at three (p = 0.43) and six months (p = 0.262). Also, the mean CMS and SST scores were similar in both groups at six months (p = 0.815 and p = 0.834, respectively).

It would thus seem that low-dose rESWT does not reduce pain or improve function in patients chronic rotator cuff tendinitis compared with placebo treatment.

Cite this article: Bone Joint J 2013;95-B:1521–6.


Bone & Joint 360
Vol. 1, Issue 3 | Pages 30 - 33
1 Jun 2012

The June 2012 Research Roundup360 looks at: platelet-rich plasma; ageing, bone and mesenchymal stem cells; cytokines and the herniated intervertebral disc; ulcerative colitis, Crohn’s disease and anti-inflammatories; the effect of NSAIDs on bone healing; osteoporosis of the fractured hip; herbal medicine and recovery after acute muscle injury; and ultrasound and the time to fracture union.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 10 - 15
1 Jan 2012
Ollivere B Wimhurst JA M. Clark I Donell ST

The most frequent cause of failure after total hip replacement in all reported arthroplasty registries is peri-prosthetic osteolysis. Osteolysis is an active biological process initiated in response to wear debris. The eventual response to this process is the activation of macrophages and loss of bone.

Activation of macrophages initiates a complex biological cascade resulting in the final common pathway of an increase in osteolytic activity. The biological initiators, mechanisms for and regulation of this process are beginning to be understood. This article explores current concepts in the causes of, and underlying biological mechanism resulting in peri-prosthetic osteolysis, reviewing the current basic science and clinical literature surrounding the topic.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 304 - 310
1 Feb 2010
Jia W Zhang C Wang J Feng Y Ai Z

Platelet-leucocyte gel (PLG), a new biotechnological blood product, has hitherto been used primarily to treat chronic ulcers and to promote soft-tissue and bone regeneration in a wide range of medical fields. In this study, the antimicrobial efficacy of PLG against Staphylococcus aureus (ATCC 25923) was investigated in a rabbit model of osteomyelitis. Autologous PLG was injected into the tibial canal after inoculation with Staph. aureus. The prophylactic efficacy of PLG was evaluated by microbiological, radiological and histological examination. Animal groups included a treatment group that received systemic cefazolin and a control group that received no treatment.

Treatment with PLG or cefazolin significantly reduced radiological and histological severity scores compared to the control group. This result was confirmed by a significant reduction in the infection rate and the number of viable bacteria. Although not comparable to cefazolin, PLG exhibited antimicrobial efficacy in vivo and therefore represents a novel strategy to prevent bone infection in humans.