In 139 patients with burst fractures of the thoracic, thoracolumbar or lumbar spine, the least sagittal diameter of the spinal canal at the level of injury was measured by computerised tomography. By multiple logistic regression we investigated the joint correlation of the level of the burst fracture and the percentage of spinal canal stenosis with the probability of an associated neurological deficit. There was a very significant correlation between neurological deficit and the percentage of spinal canal stenosis; the higher the level of injury the greater was the probability. The severity of neurological deficit could not be predicted.
We report the ten-year results for three designs of stem in 240 total hip replacements, for which subsidence had been measured on plain radiographs at regular intervals. Accurate migration patterns could be determined by the method of Einzel-Bild-Roentgen-Analyse-femoral component analysis (EBRA-FCA) for 158 hips (66%). Of these, 108 stems (68%) remained stable throughout, and five (3%) started to migrate after a median of 54 months. Initial migration of at least 1 mm was seen in 45 stems (29%) during the first two years, but these then became stable. We revised 17 stems for aseptic loosening, and 12 for other reasons. Revision for aseptic loosening could be predicted by EBRA-FCA with a sensitivity of 69%, a specificity of 80%, and an accuracy of 79% by the use of a threshold of subsidence of 1.5 mm during the first two years. Similar observations over a five-year period allowed the long-term outcome to be predicted with an accuracy of 91%. We discuss the importance of four different patterns of subsidence and confirm that the early measurement of migration by a reasonably accurate method can help to predict long-term outcome. Such methods should be used to evaluate new and modified designs of prosthesis.
Aims. Machine-learning (ML)
Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability
We report the theoretical basis of a method to measure axial migration of femoral components of total hip replacements (THR). The use of the top of the greater trochanter and a lateral point on the collar of the stem, allowing for variations of up to 10 degrees rotation of the femur in any direction between successive radiographs, gave a maximum error of 0.37 mm. At a more realistic 5 degrees rotational variation, the error was only 0.13 mm. These data were confirmed in an experimental study using digitisation of points and special software. We also showed that the centre of the femoral head, the stem tip, and the lesser trochanter provided less accurate landmarks. In a second study we digitised a series of radiographs of 51 Charnley and 57 Stanmore THRs; the mean migration rates were found to be identical. We then studied 46 successful stems with a minimum follow-up of eight years and 46 stems which had failed by aseptic loosening at different times. At two years, the successful stems had migrated by a mean of 1.45 +/- 0.68 mm, but the failed cases had a mean migration of 4.32 +/- 2.58 mm (p <
0.0001). Of the successful cases 76% had migrated less than 2 mm, while in the failed group 84% had migrated more than 2 mm. For any particular case migration of more than 2.6 mm at two years had only a 5% chance of continuing success and would therefore merit special follow-up. Only 24% of the eventually successful stems showed migration at the stem-cement interface, but this had happened in every failed stem. We conclude that it would be possible to evaluate a new cemented design of femoral stem over a two-year period by the use of our method and to compare its performance against the reported known standard of the Charnley and Stanmore designs.
Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the accuracy of the predictive model. Methods. A retrospective study was conducted on 1,061 TKAs performed from January 2016 to December 2019 with an image-based robotic-assisted system. Demographic data included age, sex, height, and weight. The femoral and tibial mechanical axis and the osteophyte volume were calculated from CT scans. These inputs were used to develop a predictive model aimed to predict operating time based on demographic data only, and demographic and 3D patient anatomy data. Results. The key factors for predicting operating time were the surgeon and patient weight, followed by 12 anatomical parameters derived from CT scans. The predictive model based only on demographic data showed that 90% of
Aims. The aim of this study was to develop and internally validate a prognostic nomogram to predict the probability of gaining a functional range of motion (ROM ≥ 120°) after open arthrolysis of the elbow in patients with post-traumatic stiffness of the elbow. Methods. We developed the Shanghai
Aims. Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make
Aims. Heterotopic ossification (HO) is a common complication after elbow trauma and can cause severe upper limb disability. Although multiple prognostic factors have been reported to be associated with the development of post-traumatic HO, no model has yet been able to combine these predictors more succinctly to convey prognostic information and medical measures to patients. Therefore, this study aimed to identify prognostic factors leading to the formation of HO after surgery for elbow trauma, and to establish and validate a nomogram to predict the probability of HO formation in such particular injuries. Methods. This multicentre case-control study comprised 200 patients with post-traumatic elbow HO and 229 patients who had elbow trauma but without HO formation between July 2019 and December 2020. Features possibly associated with HO formation were obtained. The least absolute shrinkage and selection operator regression model was used to optimize feature selection. Multivariable logistic regression analysis was applied to build the new nomogram: the Shanghai post-Traumatic Elbow Heterotopic Ossification
Aims. The aims of this study were to assess mapping models to predict the three-level version of EuroQoL five-dimension utility index (EQ-5D-3L) from the Oxford Knee Score (OKS) and validate these before and after total knee arthroplasty (TKA). Methods. A retrospective cohort of 5,857 patients was used to create the
Aims. Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated
The August 2023 Knee Roundup. 360. looks at: Curettage and cementation of giant cell tumour of bone: is arthritis a given?; Anterior knee pain following total knee arthroplasty: does the patellar cement-bone interface affect postoperative anterior knee pain?; Nickel allergy and total knee arthroplasty; The use of artificial intelligence for the
Aims. A substantial fraction of patients undergoing knee arthroplasty (KA) or hip arthroplasty (HA) do not achieve an improvement as high as the minimal clinically important difference (MCID), i.e. do not achieve a meaningful improvement. Using three patient-reported outcome measures (PROMs), our aim was: 1) to assess machine learning (ML), the simple pre-surgery PROM score, and logistic-regression (LR)-derived performance in their
Aims. To determine the major risk factors for unplanned reoperations (UROs) following corrective surgery for adult spinal deformity (ASD) and their interactions, using machine learning-based
Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate
Acute bone and joint infections in children are serious, and misdiagnosis can threaten limb and life. Most young children who present acutely with pain, limping, and/or loss of function have transient synovitis, which will resolve spontaneously within a few days. A minority will have a bone or joint infection. Clinicians are faced with a diagnostic challenge: children with transient synovitis can safely be sent home, but children with bone and joint infection require urgent treatment to avoid complications. Clinicians often respond to this challenge by using a series of rudimentary decision support tools, based on clinical, haematological, and biochemical parameters, to differentiate childhood osteoarticular infection from other diagnoses. However, these tools were developed without methodological expertise in diagnostic accuracy and do not consider the importance of imaging (ultrasound scan and MRI). There is wide variation in clinical practice with regard to the indications, choice, sequence, and timing of imaging. This variation is most likely due to the lack of evidence concerning the role of imaging in acute bone and joint infection in children. We describe the first steps of a large UK multicentre study, funded by the National Institute for Health Research, which seeks to integrate definitively the role of imaging into a decision support tool, developed with the assistance of individuals with expertise in the development of clinical
The February 2023 Children’s orthopaedics Roundup. 360. looks at: Trends in management of paediatric distal radius buckle fractures; Pelvic osteotomy in patients with previous sacral-alar-iliac fixation; Sacral-alar-iliac fixation in patients with previous pelvic osteotomy; Idiopathic toe walking: an update on natural history, diagnosis, and treatment; A
Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate
Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk