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	� ARTHROPLASTY

Predicting whether patients will achieve 
minimal clinically important differences 
following hip or knee arthroplasty

A PERFORMANCE COMPARISON OF MACHINE LEARNING, LOGISTIC 
REGRESSION, AND PRE-SURGERY PROM SCORES USING DATA FROM 
NINE GERMAN HOSPITALS

Aims
A substantial fraction of patients undergoing knee arthroplasty (KA) or hip arthroplasty 
(HA) do not achieve an improvement as high as the minimal clinically important difference 
(MCID), i.e. do not achieve a meaningful improvement. Using three patient-reported out-
come measures (PROMs), our aim was: 1) to assess machine learning (ML), the simple pre-
surgery PROM score, and logistic-regression (LR)-derived performance in their prediction 
of whether patients undergoing HA or KA achieve an improvement as high or higher than a 
calculated MCID; and 2) to test whether ML is able to outperform LR or pre-surgery PROM 
scores in predictive performance.

Methods
MCIDs were derived using the change difference method in a sample of 1,843 HA and 1,546 
KA patients. An artificial neural network, a gradient boosting machine, least absolute shrink-
age and selection operator (LASSO) regression, ridge regression, elastic net, random forest, 
LR, and pre-surgery PROM scores were applied to predict MCID for the following PROMs: 
EuroQol five-dimension, five-level questionnaire (EQ-5D-5L), EQ visual analogue scale (EQ-
VAS), Hip disability and Osteoarthritis Outcome Score-Physical Function Short-form (HOOS-
PS), and Knee injury and Osteoarthritis Outcome Score-Physical Function Short-form (KOOS-
PS).

Results
Predictive performance of the best models per outcome ranged from 0.71 for HOOS-PS to 
0.84 for EQ-VAS (HA sample). ML statistically significantly outperformed LR and pre-surgery 
PROM scores in two out of six cases.

Conclusion
MCIDs can be predicted with reasonable performance. ML was able to outperform tradition-
al methods, although only in a minority of cases.
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Article focus
	� Applying several machine learning (ML) 

methods, logistic regression, and pre-
surgery PROM scores to predict minimal 
clinically important differences (MCIDs) 
in patient-reported outcome measures 

(PROMs) in a German multicentre dataset 
of hip and knee arthroplasty patients.

Key messages
	� MCIDs can be predicted with fair to good 

performance.
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	� ML outperforms other methods in one-third to half of 
the cases.
	� Pre-surgery PROM scores were the most important 

predictors.

Strengths and limitations
	� Statistically robust comparison of a large variety of 

methods.
	� We used appropriate methods to improve under-

standing of ML predictions.
	� Larger sample size may increase the precision of 

performance estimates and improve performance.

Introduction
Knee arthroplasty (KA) and hip arthroplasty (HA) are 
high-volume surgical procedures.1 A total of 173,625 total 
knee arthroplasties (TKAs) and 227,851 total hip arthro-
plasties (THAs) were conducted in Germany in 2020, 
both ranking among the top 20 procedures with regard 
to volume in German hospitals.2 Recently, noticeable 
increases in KA and HA incidences have been reported in 
the Organisation for Economic Cooperation and Devel-
opment (OECD)3-7 and European countries,8–10 and rates 
are projected to further increase dramatically.4,5,7,11–19

Nevertheless, high case-volumes do not necessarily 
indicate high patient-reported satisfaction. It has been 
reported that up to 30% of patients undergoing HA or 
KA remain unsatisfied with the outcome.20–23 Measured 
by patient-reported outcome measures (PROMs) – that 
is, standardized questionnaires that measure the patient’s 
health state at a given time – up to 65% of patients do 
not achieve a minimal clinically important difference 
(MCID) after HA or KA.24–27 The MCID is defined as “the 
smallest difference in score in the domain of interest 
which patients perceive as beneficial and which would 
mandate, in the absence of troublesome side effects and 
excessive cost, a change in the patient’s management".28 
More easily, it can be defined as "the smallest change that 
is important to patients",29 or “smallest benefit of value 
to patients".30

The share of patients failing to achieve a MCID after 
HA/KA highlights the potential for better decision-making. 
The success of surgery depends on many individual 
patient factors, such as the duration and severity of the 
disease, the extent of perceived pain and discomfort, the 
use of medication, personal circumstances, concomitant 
diseases, and expectations.31–33 As providers’ recommen-
dation for surgery can be driven by other factors than 
clinical guidance alone, e.g. financial incentives,31 a data-
driven decision support tool may be useful. Patients who 
can be expected to not achieve a MCID may reconsider 
their choice of treatment, and may be protected from 
unnecessary risk that comes with surgery.34 This would 
improve healthcare systems’ resource allocation and also 
result in fewer disappointed patients.

Machine learning (ML), a sub-branch of artificial intelli-
gence,35,36 is a promising approach in predicting whether 
patients achieve MCIDs following HA/KA.24,26,37–41 In 

classification tasks, supervised ML can be applied.36,42,43 
ML differs from classical statistical analysis as it can detect 
non-linearities, interactions, or variable selection itself.42,44 
Logistic regression (LR) was not defined as ML,45,46 but 
acted as a comparison method.47 We further derived 
predictions using ‘simple’ pre-surgery PROM scores, 
an approach that showed promising results in previous 
research.40,48

This study aimed: 1) to assess ML, pre-surgery PROM 
score, and LR performance in predicting whether patients 
undergoing HA or KA achieve an improvement as high or 
higher than a calculated MCID for three PROMs; and 2) to 
identify if ML is able to outperform LR and/or pre-surgery 
PROM scores in doing so.

Methods
Data.  Data from nine hospitals collected in the German 
PROMoting Quality study were used.49 PROMoting Quality 
was registered under the trial number DRKS00019916 in 
the German Clinical Trials Register. For this study, only 
patients from the control group were included since they 
received treatment as usual. The process of patient selec-
tion for this study is illustrated in Figure 1.

Fig. 1

Flowchart of patient enrolment for this study.



BONE & JOINT RESEARCH 

B. LANGENBERGER, D. SCHREDNITZKI, A. M. HALDER, R. BUSSE, C. M. PROSS514

Out of 7,827  initially recruited patients, 59  were 
excluded due to receiving another treatment than that 
indicated by randomization, 564 patients were excluded 
due to an error in randomization triggering, and 71 
received a procedure not indicating HA/KA. After removal 
of observations from individuals who were part of the 
intervention group, 1,843 KA and 1,546  HA patients 
remained in the dataset.

For MCID predictions, we followed Fontana et al24 and 
excluded all patients who, mathematically, could not 
reach a MCID due to a pre-surgery PROM score that was 
too high, meaning that the addition of the MCID would 
exceed the scale.

All pre-surgery PROM scores and their dimensions 
were included as predictors for every outcome. Addition-
ally, age, sex, job status, weight, height, BMI, smoking 
status, living situation, comorbidities, duration of weekly 
activity, degree of care dependence, education, and 
level of physical activity during work/daily routines were 
included (see Appendix 1 for all variables). After creating 
dummies for all categorical variables, 198 variables were 
available for feature selection for HA patients and 203 
for KA patients. Differences in variables between HA and 
KA patients resulted from slightly varying comorbidity 
profiles and PROM dimensions between both indications.
Missing values and outlier handling.  For variables with < 
30% missing values, missing values were imputed using 
missForest,50 for both categorical and continuous varia-
bles. Variables with ≥ 30% missing values were excluded 
from the analysis. An overview of all variables with miss-
ing values is given in Appendix 2.
Patient-reported outcome measures.  For MCID calcula-
tion, we used only PROMs with evidence about reasona-
ble psychometric properties, namely the generic PROMs 
EuroQol five-dimension five-level questionnaire (EQ-5D-
5L)51–53 and EQ visual analogue scale (EQ-VAS),53 as well 

as the disease-specific Hip disability and Osteoarthritis 
Outcome Score-Physical Function Short-form (HOOS-
PS) and Knee injury and Osteoarthritis Outcome Score-
Physical Function Short-form (KOOS-PS).54–56

Due to a lack of sufficient validation in arthroplasty 
patients, Patient-Reported Outcomes Measurement 
Information System (PROMIS) Fatigue and PROMIS 
Depression, which were available in the dataset, were not 
used to determine outcomes, but only as input features.
MCID calculation.  We calculated MCIDs using anchor-
based methods, as recommended.57 Patients were asked, 
“has your health improved as a result of the treatment?” 
on a Global Rating Scale, which was used as anchor.58 
Possible answers were “worse”, “no improvement”, 
“minimal improvement”, “improvement”, and “great 
improvement”.

The MCID was derived using the change difference 
(CD) method.58,59 The CD MCID is calculated as the 
difference of the mean pre- to post-surgery PROM score 
change between responders and non-responders. We 
classified patients who answered “no improvement” on 
the Global Rating Scale as non-responders, while patients 
who answered “minimal improvement” were classified 
as responders.58

We used pre-surgery and 12-month post-surgery 
PROM scores for MCID determination. Previous research 
found that patient-reported outcomes after HA/KA remain 
stable from one year after surgery,60 or even earlier.61

When the MCID was smaller in magnitude than the 
minimal detectable change (MDC), which measures the 
difference in a given PROM score that is assumed to be a 
“real” difference rather than only a measurement error,53 
the originally derived MCID was substituted with the 
MDC.
Prediction methods.  ML algorithms that performed well in 
previous studies,24,26,37–40 namely an artificial feed-forward 

Fig. 2

Graphical illustration of the decision-making support given by the prediction models for practical application. Once relevant data are gathered before surgery 
(1), trained models are fed with the data and make a prediction (2) about whether surgery is recommended for the respective patient given their input 
variables. Finally, at the time of (potential) surgery (3), patients recommended to undergo surgery do so, while patients not recommended to be operated do 
not. PROMs, patient-reported outcome measures.
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neural network (NN),36,42,62 gradient-boosting machine 
(GBM),63,64 least absolute shrinkage and selection op-
erator (LASSO) regression,65–67 ridge regression, elastic 
net,65 and random forest (RF)68 were applied to predict 
MCIDs. Additionally, LR and pre-surgery PROM scores 
were applied.48

All ML and LR analyses were performed using the 
h2o package in the statistical software R (R Foundation 
for Statistical Computing, Austria) and Rstudio (Rstudio, 
USA). All analyses were run for the KA and HA samples 
separately. Figure  2 illustrates the data, relevant time-
points, and prediction task of this paper.
Predictive performance measures.  Discriminative per-
formance for all applied ML algorithms and LR was as-
sessed using the area under the receiver operating char-
acteristic curve (AUC) as main performance indicator. 
AUC has a maximum of 1 and a theoretical minimum of 
0, while 0.5 indicates predictive performance as good 
as chance. Performance on AUC is classified as fail (0.5 
to 0.59), poor (0.6 to 0.69), fair (0.7 to 0.79), good (0.8 
to 0.89), or excellent (0.9 to 1.0).69 AUC is not attenuat-
ed by imbalanced data,70 and does not rely on a specific 

sensitivity-specificity trade-off such as other metrics (e.g. 
Youden Index).41

We also report the metric sensitivity, specificity, accu-
racy, g-mean,71,72 and Youden Index.72 Sensitivity, speci-
ficity, accuracy, and g-mean were reported at the decision 
threshold which maximizes the g-mean. For predictions 
based on pre-surgery PROM scores and the Youden Index 
itself, sensitivity and specificity were set to maximize the 
Youden Index.48

Further, we report model calibration73,74 on unfore-
seen test data,24 namely the Brier Score75,76 calibration 
slope and calibration intercept.73 Calibration slope and 
intercept could not be calculated for pre-surgery PROM 
score predictions, as predicted probabilities were always 
0 or 1, and log-odds of predicted probabilities as neces-
sary for calculating calibration slope and intercept could 
not be derived.77 Also, 95% asymptotic confidence inter-
vals (CIs) were derived and reported for all performance 
indicators.78 AUC comparisons and CIs were derived 
using the method of Delong et al,79 with significance set 
at the level of 5%. It should be noted that although CIs 
may overlap, AUCs may still turn out to be statistically 
significantly different based on the test by Delong et 
al.79,80 Therefore, when we write that one model outper-
forms another, we are referring to the fact that the model 
performs statistically significantly better than another 
model based on this test.79

Data preparation and model selection.  The dataset was 
randomly split into 80% training and 20% test data. 
Random forest feature selection81 was applied for each 
PROM and sample. For all ML algorithms, several hyper-
parameters were varied in order to select the best pos-
sible specification for each algorithm.42 Hyperparameter 
tuning was done with fivefold cross-validation (CV)42 
based on the training dataset using grid search.82 The se-
lected hyperparameters for each model for both KA and 
HA can be found in Appendix 3. For all ML algorithms, 
after parameter tuning and performance evaluation, the 
best-performing specification was selected. All methods 
were run on the test dataset for final performance assess-
ment and comparison.
Variable importance and explanation.  Variable impor-
tance was reported using Shapley Additive exPlanations 
(SHAP) analysis.83,84 SHAP analysis is a game theory-based 
approach that ranks variables regarding their influence 
on different models’ predicted probabilities, and facili-
tates explanations for which values for each variable drive 
predictions to either increase or decrease.83,85 Partial de-
pendence plots were used to illustrate the predicted class 
probability given the pre-surgery PROM scores.42

Results
Summary statistics and MCID values.  The mean age across 
both HA and KA patients was approximately 66 years, and 
a slight majority of individuals were female. Mean BMI 
was higher in the KA sample (30.41 kg/m2) than in the 
HA sample (27.87 kg/m2). At 12 months post-surgery, pa-
tients in both samples had improved on all scores where 

Table I. Mean baseline characteristics (if not otherwise reported) of hip and 
knee arthroplasty patients (standard deviations in parentheses).

Variable
Hip arthroplasty 
(n = 1,843)

Knee arthroplasty 
(n = 1,546)

Age at surgery, yrs 65.99 (10.61) 66.18 (9.4)

BMI, kg/m2 27.87 (5.07) 30.41 (5.68)

HOOS-PS/KOOS-PS 
baseline 47.1 (16.18) 42.97 (12.05)

HOOS-PS/KOOS-PS 
outcome 15.19 (14.19) 26.78 (12.87)

EQ-5D-5L baseline 0.6 (0.26) 0.63 (0.25)

EQ-5D-5L outcome 0.87 (0.17) 0.84 (0.19)

EQ-VAS baseline 57.16 (19.72) 58.04 (19.22)

EQ-VAS outcome 73.6 (18.36) 69.93 (18.38)

PROMIS depression 
baseline 49.84 (8.26) 49.39 (8.15)

PROMIS fatigue baseline 49.23 (9.97) 48.15 (9.54)

Male (fraction) 0.44 (0.5) 0.46 (0.5)

Diabetes (fraction)** 0.09 (0.29) 0.1 (0.3)

Depression (fraction)** 0.06 (0.24) 0.07 (0.25)

Heart disease (fraction)** 0.13 (0.33) 0.12 (0.33)

Back pain (fraction)** 0.21 (0.41) 0.2 (0.4)

At least one hour of weekly 
activity (fraction) 0.91 (0.28) 0.9 (0.3)

Highest education: high-
school or higher (fraction) 0.86 (0.35) 0.82 (0.38)

Working (at least part-time) 
(fraction) 0.34 (0.47) 0.3 (0.46)

Living in a nursing home 
(fraction) 0 (0.06) 0.01 (0.08)

*Self-reported (yes/no).
EQ-5D-5L, EuroQol five-dimension five-level questionnaire; HOOS-
PS, Hip disability and Osteoarthritis Outcome Score-Physical Function 
Short Form; KOOS-PS, Knee injury and Osteoarthritis Outcome 
Score-Physical Function Short Form; PROMIS, Patient-Reported 
Outcome Measurement Information System; VAS, visual analogue 
scale.
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MCIDs were calculated. The drop in HOOS-PS scores after 
surgery was larger than the drop in KOOS-PS scores. Both 
groups improved substantially on EQ-5D-5L and EQ-VAS, 
with HA patients achieving slightly larger improvements 
(Table I).

MCIDs for EQ-5D-5L were 0.20 (KA) and 0.17 (HA), 
for EQ-VAS 3.27 (KA) and 7.81 (HA), for KOOS-PS -5.06, 
and for HOOS-PS -10.01 (Table  II). The percentages of 
patients who were mathematically able to reach a MCID 
varied across PROMs (Table II). While only 0.13% (n = 2) 
of patients were mathematically unable to reach a MCID 
in the KA sample for KOOS-PS, 21.38% (n = 394) were 
unable to reach a MCID in the HA sample for EQ-5D-5L. 
The share of patients who reached a MCID ranged from 
58.00% (n = 840) for EQ-VAS (HA) to 90.56% (n = 1,312) 
for HOOS-PS (Table II).
Machine learning, logistic regression, and pre-surgery 
PROM predictive performance.  Performance of grid 
search selected models on training data with fivefold 
cross-validation was reported in Appendix 4 for all indi-
cations and PROMs. Tuning parameters for the selected 
models are presented in Appendix 3. After training, the 
selected models were applied to the test dataset for per-
formance assessment (see Figure 2 for receiver operating 
curves).

The performance69 of the best models for each 
outcome ranged between fair (i.e. AUC between 0.7 
and 0.8; for knee arthroplasty: EQ-VAS, KOOS-PS; for 
hip arthroplasty: HOOS-PS) and good (i.e. 0.8 ≤ AUC 
< 0.9; knee arthroplasty: EQ-5D-5L; hip arthroplasty: 
EQ-5D-5L, EQ-VAS). In all cases, a ML algorithm was the 
best-performing model (see Table III and Figure 3).

Table II. Results of minimal clinically important difference calculation for the hip arthroplasty and knee arthroplasty samples.

Variable EQ-5D-5L EQ-VAS KOOS-PS

Knee arthroplasty (n = 1,546)*

MCID 0.20 5.86† -5.06

MDC 0.10 5.86 -3.67

Share of patients who reached a MCID, % 64.88 64.94 81.76

Share of patients who mathematically could not reach a MCID, %‡ 6.99 0.97 0.13

Share of patients who reached a MCID where mathematically possible, % 64.94 64.88 81.76

Hip arthroplasty (n = 1,843)*

MCID 0.17 7.81 -10.01

MDC 0.10 6.01 -9.42

Share of patients who reached a MCID, % 58.00 66.36 90.56

Share of patients who mathematically could not reach a MCID, %‡ 21.38 1.30 0.76

Share of patients who reached a MCID where mathematically possible, % 66.36 58.00 90.56

*Sample size before exclusion of patients who could not reach a MCID.
†MCID values were substituted with MDC values, since in these cases the derived MDC was greater than the derived MCID.
‡In these cases, a MCID could not be reached because the MCID value added (EQ-VAS; EQ-5D-5L) to/subtracted (HOOS-PS/KOOS-PS) from the 
pre-surgery PROM score extended the PROM’s scale. Patients who were not able to reach a MCID were excluded from further analysis.
EQ-5D-5L, EuroQol five-dimension five-level; KOOS-PS, Knee injury and Osteoarthritis Outcome Score-Physical Function Shot Form; MCID, 
minimal clinically important difference; MDC, minimal detectable change; PROM, patient-reported outcome score; VAS, visual analogue scale.

Fig. 3

Receiver operating curves for all models, indications, and patient-reported 
outcome scores (PROMs). AUC, area under the receiver operating 
characteristic curve; EQ-5D-5L, EuroQol five-dimension five-level 
questionnaire; HOOS-PS, Hip disability and Osteoarthritis Outcome Score-
Physical Function Short Form; KOOS-PS, Knee injury Osteoarthritis Outcome 
Score-Physical Function Short Form; LASSO, least absolute shrinkage and 
selection operator; VAS, visual analogue scale.
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Statistical difference testing of AUCs between the best 
ML model and LR or pre-surgery PROM scores is reported 
in Table IV.79

Statistically significant AUC differences between the 
best-performing ML model and pre-surgery PROM scores 
at the 5% level could be identified in two cases, namely 
for EQ-VAS and HOOS-PS in the HA sample. ML statisti-
cally significantly outperformed LR for EQ-5D-5L in the 
KA sample and for HOOS-PS in the HA sample (Table IV).
SHAP analysis.  SHAP analysis for the top ten features was 
performed for both HA and KA patients based on the 
GBM (Figure 4).

Red dots in Figure 4 indicate high variable values, and 
positive x-axis values indicate an increased chance of 
achieving a MCID. For all PROMs and patient samples, 
the pre-surgery PROM score of the outcome PROM 
was ranked as the most important feature. Therefore, 
better health (high EQ-VAS or EQ-5D-5L/low HOOS-PS/

KOOS-PS score) was associated with a lower probability 
of achieving a MCID.

Further important variables were other PROM scores 
(and subdimensions) as well as self-reported back pain 
(“PQ_back”) in all cases, BMI and age at surgery in four 
cases, and height (additional to BMI) in three cases. 
For all of those variables, a higher variables value (e.g. 
higher BMI) was associated with decreased likelihood of 
achieving a MCID.

Partial dependence plots visualize how the probability 
of achieving a MCID (y-axis) changes when pre-surgery 
PROM scores change (along the x-axis) for the respective 
PROM. We observe that, for all PROMs, there seems to be 
an indeterminate cut-off point after which the probability 
of achieving a MCID declines steeply (Figure 5).

Table III. Performance assessment of all selected models on unforeseen test data.

Variable
Neural 
network

Gradient 
boosting LASSO Ridge Elastic net Random forest

Logistic 
regression

Pre-surgery 
PROM scores

Knee arthroplasty

EQ-5D-5L (n = 288) 
AUC (95% CI)

0.76 (0.7 to 
0.81)

0.79 (0.74 to 
0.84)

0.75 (0.69 to 
0.8)

0.75 (0.69 to 
0.81)

0.76 (0.7 to 
0.81)

0.80 (0.74 to 
0.85)*

0.74 (0.68 to 
0.8) 0.76 (0.7 to 0.81)

EQ-VAS (n = 307), AUC 
(95% CI)

0.73 (0.67 to 
0.78)

0.74 (0.69 to 
0.8)

0.76 (0.71 to 
0.82)

0.76 (0.7 to 
0.81)

0.76 (0.71 to 
0.82)*

0.73 (0.68 to 
0.79)

0.76 (0.7 to 
0.81) 0.75 (0.7 to 0.81)

KOOS-PS (n = 309), 
AUC (95% CI)

0.68 (0.62 to 
0.75)

0.71 (0.64 to 
0.77)

0.75 (0.69 to 
0.81)

0.73 (0.67 to 
0.79)

0.76 (0.7 to 
0.82)*

0.69 (0.63 to 
0.76)

0.76 (0.7 to 
0.81) 0.74 (0.68 to 0.8)

Hip arthroplasty

EQ-5D-5L (n = 290), 
AUC (95% CI)

0.8 (0.75 to 
0.86)

0.81 (0.76 to 
0.86)*

0.81 (0.76 to 
0.86)

0.8 (0.75 to 
0.85)

0.81 (0.76 to 
0.86)

0.81 (0.75 to 
0.86)

0.81 (0.76 to 
0.86)

0.79 (0.73 to 
0.84)

EQ-VAS (n = 364), AUC 
(95% CI)

0.82 (0.78 to 
0.86)

0.83 (0.79 to 
0.87)

0.84 (0.8 to 
0.88)*

0.84 (0.8 to 
0.88)

0.84 (0.8 to 
0.88) 0.84 (0.8 to 0.88)

0.84 (0.8 to 
0.88) 0.8 (0.75 to 0.84)

HOOS-PS (n = 366), 
AUC (95% CI)

0.71 (0.65 to 
0.76)

0.67 (0.62 to 
0.72)

0.66 (0.61 to 
0.72)

0.71 (0.66 to 
0.76)*

0.71 (0.65 to 
0.76)

0.64 (0.58 to 
0.69)

0.67 (0.61 to 
0.72)

0.58 (0.47 to 
0.68)

*Best-performing model (sometimes identified using further decimal digits than those shown in the table).

Table IV. Statistical difference analysis between different areas under the receiver operating characteristic curve of the best machine learning and non-
machine learning method.

PROM Best ML model AUC Comparison 1 Comparison 2

Logistic regression (AUC) p-value*
Pre-surgery PROM scores 
(AUC) p-value*

Knee 
arthroplasty
EQ-5D-5L RF 0.80 0.74 0.012‡ 0.76 0.052†

EQ-VAS Elastic net 0.76 0.76 0.401 0.75 0.519

KOOS-PS Elastic net 0.76 0.76 0.186 0.74 0.355

Hip 
arthroplasty
EQ-5D-5L GBM 0.81 0.81 0.745 0.79 0.242

EQ-VAS LASSO 0.84 0.84 0.597 0.80 0.034‡

HOOS-PS Ridge 0.71 0.67 0.017‡ 0.58 0.011‡

*p-value for statistical difference of the AUCs of the compared models.
†Indicates statistical significance at the 10% level.
‡Indicates statistical significance at the 5% level.
§Indicates statistical significance at the 1% level.
AUC, area under the curve; EQ-5D-5L, EuroQol five-dimension five-level questionnaire; GBM, gradient-boosting model; HOOS-PS, Hip disability 
and Osteoarthritis Outcome Score-Physical Function Short Form; KOOS-PS, Knee injury and Osteoarthritis Outcome Score-Physical Function 
Short Form; LASSO, least absolute shrinkage and selection operator; ML, machine learning; PROM, patient-reported outcome measure; RF, 
random forest; VAS, visual analogue scale.
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Discussion
This study was the first to make MCID predictions in a 
German hip and knee arthroplasty sample. It found that 
ML outperformed both LR and the pre-surgery PROM 
scores in two out of six cases.

Our findings were partly in line with Zhang et al,40 
who found that pre-surgery PROM scores performed 
equally as well as ML. In cases where pre-surgery PROM 
scores perform equally as well as other methods, their 
application to MCID prediction may likely yield superior 
clinician and patient adherence to data-driven decision 
support, due to intuitive interpretation.

The mainly robust performance of LR was in line 
with some previous evidence.24,37,38,47 LR did not perform 
worse than ML in four cases, but there were two cases in 
which ML outperformed LR. Fontana et al24 also reported 
that ML outperformed LR. The present study highlights 
the relevance of comparing ML models with classical 

prediction approaches.40,41 Some previous studies lacked 
a proper comparison, and may therefore have overem-
phasized the utility of ML in this research question.24,26,39

We further tested whether balancing the data 
improves the predictive performance of the models,86 
but found that this was not the case. In line with 
previous evidence,24,26,37–40 SHAP analysis confirmed that 
pre-surgery PROM scores were major drivers of MCID 
prediction for all outcomes and samples. As per previous 
studies, we found some evidence that lower age24,39 and 
lower BMI24,26 were associated with a better chance of 
achieving a MCID.

In contrast to Kunze et al,26 our models did not 
demonstrate ‘excellent’ performance for EQ-VAS, even 
though the sample size was comparable. We argue that 
the results of studies showing extremely high AUC values 
should be interpreted with caution if they do not report 
whether patients who were mathematically unable to 
reach a MCID were excluded.26,40 When we included 
patients who could not reach a MCID, to see how this 
affected our results, we observed substantially higher 
AUC values.

Where comparable to previous evidence, our derived 
MCIDs for EQ-5D-5L, EQ-VAS, and HOOS-PS tended to be 
lower.53,87,88 The fraction of patients meeting the KOOS-PS 
MCID was higher than in another study,39 and the fraction 
of patients achieving a MCID on EQ-VAS was remarkably 

Fig. 4

Shapley Additive exPlanations (SHAP) analysis results for knee arthroplasty 
(KA) and hip arthroplasty (HA) patients and all patient-reported outcome 
measures (PROMs). Numbers in PROM names (e.g. KOOS_3_2) represent 
dummies for response options (e.g. response option 2 in KOOS_3 is 
KOOS_3_2) and the domain of the PROM (i.e. the third domain in KOOS 
is KOOS_3_2). EQ-5D-5L, EuroQol five-dimension five-level questionnaire; 
EQ-VAS, EuroQol visual analogue scale; HOOS-PS, Hip disability and 
Osteoarthritis Outcome Score-Physical Function Short Form; KOOS-PS, Knee 
injury and Osteoarthritis Outcome Score-Physical Function Short Form; 
PQ_back, self-reported back pain; PROMIS, patient-reported outcome 
measurement information system.

Fig. 5

Partial dependence plots for hip and knee arthroplasty patients and all 
patient-reported outcome measures. EQ-5D-5L, EuroQol five-dimension five-
level questionnaire; EQ-VAS, EuroQol visual analogue scale; HOOS-PS, Hip 
disability and Osteoarthritis Outcome Score-Physical Function Short Form; 
KOOS-PS, Knee injury and Osteoarthritis Outcome Score-Physical Function 
Short Form.
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close to Kunze et al.26 Although our MCIDs tended to be 
smaller than in previous studies, we are confident that 
the MCIDs reflect ‘true’ differences in changes in PROM 
scores, and not just measurement error. That is because 
we compared (and adjusted in one case) the MCIDs to 
the MDCs (see Methods section). The difference in MCID 
compared to previous studies may have arisen due to 
the study sample, the MCID calculation method, and the 
anchor.

This study comes with some limitations. First, the MCID 
calculation is unstandardized, and different approaches 
will yield different results. Second, larger sample sizes are 
required to derive more precise AUC estimates (see CIs in 
Table III). Third, the study does not confirm which PROM, 
or combination of PROMs, is most important for patients 
undergoing hip or knee arthroplasty. When being used 
in shared decision-making, it must be defined which 
(bundle of) PROM(s) is relevant for patients. When a deci-
sion support tool predicts that a patient may improve on 
one PROM and not on another, the consequence remains 
unclear. This question is of high practical relevance and 
must be addressed in future research.

In summary, we found that the best models for each 
outcome performed ‘fair’ to ‘good’, according to the defi-
nition of Hosmer and Lemeshow, in predicting MCIDs 
for hip and knee arthroplasty patients,69 depending 
on the PROM and subsample under consideration. ML 
outperformed LR and pre-surgery PROM scores as predic-
tion tool alternatives in two out of six cases, and never 
performed worse than the other methods. No algorithm 
consistently performed as the best in all cases. Different 
ML algorithms should be compared in practice to identify 
the best for the application at hand. Additional research 
on the optimal set of PROMs for decision-making is 
required.

Supplementary material
‍ ‍Tables showing an overview of the complete set 

of variables as well as the variables selected by the 
random forest, missing values, tuning parame-

ters, and all discrimination and calibration metrics for 
training and performance assessment.
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