An increasing number of patients are treated by autologous chondrocyte implantation (ACI). This study tests the hypothesis that culture within a defined chondrogenic medium containing TGF-β enhances the reexpression of a chondrocytic phenotype and the subsequent production of cartilaginous extracellular matrix by human chondrocytes used in ACI. Chondrocytes surplus to clinical requirements for ACI from 24 patients were pelleted and cultured in either DMEM (Dulbecco’s modified eagles medium)/ITS+Premix/TGF-β1 or DMEM/10%FCS (fetal calf serum) and were subsequently analysed biochemically and morphologically. Pellets cultured in DMEM/ITS+/TGF-β1 stained positively for type-II collagen, while those maintained in DMEM/10%FCS expressed type-I collagen. The pellets cultured in DMEM/ITS+/TGF-β1 were larger and contained significantly greater amounts of DNA and glycosaminoglycans. This study suggests that the use of a defined medium containing TGF-β is necessary to induce the re-expression of a differentiated chondrocytic phenotype and the subsequent stimulation of glycosaminoglycan and type-II collagen production by human monolayer expanded chondrocytes.
To review the systemic impact of smoking on bone healing as evidenced
within the orthopaedic literature. A protocol was established and studies were sourced from five
electronic databases. Screening, data abstraction and quality assessment
was conducted by two review authors. Prospective and retrospective
clinical studies were included. The primary outcome measures were
based on clinical and/or radiological indicators of bone healing.
This review specifically focused on non-spinal orthopaedic studies.Objectives
Methods
The weight-bearing status of articular cartilage has been shown to affect its biochemical composition. We have investigated the topographical variation of sulphated glycosaminoglycan (GAG) relative to the DNA content of the chondrocyte in human distal femoral articular cartilage. Paired specimens of distal femoral articular cartilage, from weight-bearing and non-weight-bearing regions, were obtained from 13 patients undergoing above-knee amputation. After papain enzyme digestion, spectrophotometric GAG and fluorometric DNA assays assessed the biochemical composition of the samples. The results were analysed using a paired Although there were no significant differences in cell density between the regions, the weight-bearing areas showed a significantly higher concentration of GAG relative to DNA when compared with non-weight-bearing areas (p = 0.02). We conclude that chondrocytes are sensitive to their mechanical environment, and that local loading conditions influence the metabolism of the cells and hence the biochemical structure of the tissue.
Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.
Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.
We describe the use of a vascularised periosteal patch onlay graft based on the 1,2 intercompartmental supraretinacular artery in the management of 11 patients (ten men, one woman) with chronic nonunion involving the proximal third of the scaphoid. The mean age of the patients was 31 years (21 to 45) with the dominant hand affected in eight. Six of the patients were smokers and three had undergone previous surgery to the scaphoid. All of the proximal fragments were avascular. The presence of union was assessed using longitudinal axis CT. Only three patients progressed to union of the scaphoid and four required a salvage operation for a symptomatic nonunion. The remaining four patients with a persistent nonunion are asymptomatic with low pain scores, good grip strength and a functional range of wrist movement. Although this technique has potential technical advantages over vascularised pedicled bone grafting, the rate of union has been disappointing and we do not recommend it as a method of treatment.
There is increasing application of bone morphogenetic proteins
(BMPs) owing to their role in promoting fracture healing and bone
fusion. However, an optimal delivery system has yet to be identified.
The aims of this study were to synthesise bioactive BMP-2, combine
it with a novel α-tricalcium phosphate/poly(D,L-lactide-co-glycolide)
(α-TCP/PLGA) nanocomposite and study its release from the composite. BMP-2 was synthesised using an Objectives
Methods
We examined whether enamel matrix derivative
(EMD) could improve healing of the tendon–bone interface following
reconstruction of the anterior cruciate ligament (ACL) using a hamstring
tendon in a rat model. ACL reconstruction was performed in both
knees of 30 Sprague-Dawley rats using the flexor digitorum tendon.
The effect of commercially available EMD (EMDOGAIN), a preparation
of matrix proteins from developing porcine teeth, was evaluated.
In the left knee joint the space around the tendon–bone interface
was filled with 40 µl of EMD mixed with propylene glycol alginate
(PGA). In the right knee joint PGA alone was used. The ligament
reconstructions were evaluated histologically and biomechanically
at four, eight and 12 weeks (n = 5 at each time point). At eight weeks,
EMD had induced a significant increase in collagen fibres connecting
to bone at the tendon–bone interface (p = 0.047), whereas the control
group had few fibres and the tendon–bone interface was composed
of cellular and vascular fibrous tissues. At both eight and 12 weeks,
the mean load to failure in the treated specimens was higher than
in the controls (p = 0.009). EMD improved histological tendon–bone
healing at eight weeks and biomechanical healing at both eight and
12 weeks. EMD might therefore have a human application to enhance
tendon–bone repair in ACL reconstruction.
Heterotopic ossification occurring after the use of commercially available bone morphogenetic proteins has not been widely reported. We describe four cases of heterotopic ossification in patients treated with either recombinant bone morphogenetic protein 2 or recombinant bone morphogenetic protein 7. We found that while some patients were asymptomatic, heterotopic ossification which had occurred around a joint often required operative excision with good results.
Osteoarthritis is extremely common and many different causes for it have been described. One such cause is abnormal morphology of the affected joint, the hip being a good example of this. For those joints with femoroacetabular impingement (FAI) or developmental dysplasia of the hip (DDH), a link with subsequent osteoarthritis seems clear. However, far from being abnormal, these variants may be explained by evolution, certainly so for FAI, and may actually be normal rather than representing deformity or disease. The animal equivalent of FAI is coxa recta, commonly found in species that run and jump. It is rarely found in animals that climb and swim. In contrast are the animals with coxa rotunda, a perfectly spherical femoral head, and more in keeping with the coxa profunda of mankind. This article describes the evolutionary process of the human hip and its link to FAI and DDH. Do we need to worry after all?
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.
We attempted to characterise the biological quality
and regenerative potential of chondrocytes in osteochondritis dissecans
(OCD). Dissected fragments from ten patients with OCD of the knee
(mean age 27.8 years (16 to 49)) were harvested at arthroscopy.
A sample of cartilage from the intercondylar notch was taken from
the same joint and from the notch of ten patients with a traumatic
cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes
were extracted and subsequently cultured. Collagen types 1, 2, and
10 mRNA were quantified by polymerase chain reaction. Compared with
the notch chondrocytes, cells from the dissecate expressed similar
levels of collagen types 1 and 2 mRNA. The level of collagen type
10 message was 50 times lower after cell culture, indicating a loss
of hypertrophic cells or genes. The high viability, retained capacity
to differentiate and metabolic activity of the extracted cells suggests
preservation of the intrinsic repair capability of these dissecates.
Molecular analysis indicated a phenotypic modulation of the expanded
dissecate chondrocytes towards a normal phenotype. Our findings
suggest that cartilage taken from the dissecate can be reasonably
used as a cell source for chondrocyte implantation procedures.
Given the growing prevalence of obesity around
the world and its association with osteoarthritis of the knee, orthopaedic
surgeons need to be familiar with the management of the obese patient
with degenerative knee pain. The precise mechanism by which obesity
leads to osteoarthritis remains unknown, but is likely to be due
to a combination of mechanical, humoral and genetic factors. Weight loss has clear medical benefits for the obese patient
and seems to be a logical way of relieving joint pain associated
with degenerative arthritis. There are a variety of ways in which
this may be done including diet and exercise, and treatment with
drugs and bariatric surgery. Whether substantial weight loss can
delay or even reverse the symptoms associated with osteoarthritis
remains to be seen. Surgery for osteoarthritis in the obese patient can be technically
more challenging and carries a risk of additional complications.
Substantial weight loss before undertaking total knee replacement
is advisable. More prospective studies that evaluate the effect
of significant weight loss on the evolution of symptomatic osteoarthritis
of the knee are needed so that orthopaedic surgeons can treat this
patient group appropriately.
Failure of fixation is a common problem in the treatment of osteoporotic fractures around the hip. The reinforcement of bone stock or of fixation of the implant may be a solution. Our study assesses the existing evidence for the use of bone substitutes in the management of these fractures in osteoporotic patients. Relevant publications were retrieved through Medline research and further scrutinised. Of 411 studies identified, 22 met the inclusion criteria, comprising 12 experimental and ten clinical reports. The clinical studies were evaluated with regard to their level of evidence. Only four were prospective and randomised. Polymethylmethacrylate and calcium-phosphate cements increased the primary stability of the implant-bone construct in all experimental and clinical studies, although there was considerable variation in the design of the studies. In randomised, controlled studies, augmentation of intracapsular fractures of the neck of the femur with calcium-phosphate cement was associated with poor long-term results. There was a lack of data on the long-term outcome for trochanteric fractures. Because there were only a few, randomised, controlled studies, there is currently poor evidence for the use of bone cement in the treatment of fractures of the hip.
Ununited fractures of the scaphoid with extensive bone resorption are usually treated by bone grafting and internal fixation, using either an open or a minimally invasive technique. We studied the feasibility of percutaneous fixation without bone grafting in a consecutive series of 27 patients with established nonunion of an undisplaced fracture of the scaphoid and extensive local resorption of bone. They were treated by a single surgeon with rigid fixation alone, using a headless cannulated screw inserted through a volar percutaneous technique. Clinical examination, standard radiographs and CT confirmed that the fracture had united in all patients at a mean of 11.6 weeks (8 to 16), and that their functional scores had improved. We concluded that extensive resorption at the fracture site is not an absolute indication for bone grafting, and that percutaneous fixation alone will eventually produce healing of ununited undisplaced fractures of the scaphoid regardless of the size of the gap.
Post-natal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells migrate, differentiate and incorporate into the nacent endothelium and thereby contribute to physiological and pathological neurovascularisation, has stimulated much interest. Its contribution to neovascularisation of tumours, wound healing and revascularisation associated with ischaemia of skeletal and cardiac muscles is well established. We evaluated the responses of endothelial precursor cells in bone marrow to musculoskeletal trauma in mice. Bone marrow from six C57 Black 6 mice subjected to a standardised, closed fracture of the femur, was analysed for the combined expression of cell-surface markers stem cell antigen 1 (sca-1+) and stem cell factor receptor, CD117 (c-kit+) in order to identify the endothelial precursor cell population. Immunomagnetically-enriched sca-1+ mononuclear cell (MNCsca-1+) populations were then cultured and examined for functional vascular endothelial differentiation. Bone marrow MNCsca-1+,c-kit+ counts increased almost twofold within 48 hours of the event, compared with baseline levels, before decreasing by 72 hours. Sca-1+ mononuclear cell populations in culture from samples of bone marrow at 48 hours bound together Ulex Europus-1, and incorporated fluorescent 1,1′-dioctadecyl- 3,3,3,’3′-tetramethylindocarbocyanine perchlorate-labelled acetylated low-density lipoprotein intracellularily, both characteristics of mature endothelium. Our findings suggest that a systemic provascular response of bone marrow is initiated by musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of neovascularisation and the healing of fractures.
We present two cases of metastatic lung cancer which occurred at the site of a previously united tibial fracture. Both patients were treated with a locked intramedullary nail. The patients presented with metastases at the site of their initial fracture approximately 16 and 13 months after injury respectively. We discuss this unusual presentation and review the relevant literature. We are unaware of any previous reports of a metastatic tumour occurring at the site of an orthopaedic implant used to stabilise a non-pathological fracture. These cases demonstrate the similar clinical presentation of infection and malignancy: a diagnosis which should always be considered in such patients.