Advertisement for orthosearch.org.uk
Results 21 - 40 of 81
Results per page:
Bone & Joint 360
Vol. 12, Issue 5 | Pages 27 - 30
1 Oct 2023

The October 2023 Wrist & Hand Roundup. 360. looks at: Distal radius fracture management: surgeon factors markedly influence decision-making; Fracture-dislocation of the radiocarpal joint: bony and capsuloligamentar management, outcomes, and long-term complications; Exploring the role of artificial intelligence chatbot in the management of scaphoid fractures; Role of ultrasonography for evaluation of nerve recovery in repaired median nerve lacerations; Four weeks versus six weeks of immobilization in a cast following closed reduction for displaced distal radial fractures in adult patients: a multicentre randomized controlled trial; Rehabilitation following flexor tendon injury in Zone 2: a randomized controlled study; On the road again: return to driving following minor hand surgery; Open versus single- or dual-portal endoscopic carpal tunnel release: a meta-analysis of randomized controlled trials


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 587 - 589
1 Jun 2023
Kunze KN Jang SJ Fullerton MA Vigdorchik JM Haddad FS

The OpenAI chatbot ChatGPT is an artificial intelligence (AI) application that uses state-of-the-art language processing AI. It can perform a vast number of tasks, from writing poetry and explaining complex quantum mechanics, to translating language and writing research articles with a human-like understanding and legitimacy. Since its initial release to the public in November 2022, ChatGPT has garnered considerable attention due to its ability to mimic the patterns of human language, and it has attracted billion-dollar investments from Microsoft and PricewaterhouseCoopers. The scope of ChatGPT and other large language models appears infinite, but there are several important limitations. This editorial provides an introduction to the basic functionality of ChatGPT and other large language models, their current applications and limitations, and the associated implications for clinical practice and research. Cite this article: Bone Joint J 2023;105-B(6):587–589


Bone & Joint Open
Vol. 3, Issue 11 | Pages 877 - 884
14 Nov 2022
Archer H Reine S Alshaikhsalama A Wells J Kohli A Vazquez L Hummer A DiFranco MD Ljuhar R Xi Y Chhabra A

Aims. Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader assessment. Methods. A consecutive preoperative sample of 130 HD patients (256 hips) was used. This cohort included 82.3% females (n = 107) and 17.7% males (n = 23) with median patient age of 28.6 years (interquartile range (IQR) 22.5 to 37.2). Three trained readers’ measurements were compared to AI outputs of lateral centre-edge angle (LCEA), caput-collum-diaphyseal (CCD) angle, pelvic obliquity, Tönnis angle, Sharp’s angle, and femoral head coverage. Intraclass correlation coefficients (ICC) and Bland-Altman analyses were obtained. Results. Among 256 hips with AI outputs, all six hip AI measurements were successfully obtained. The AI-reader correlations were generally good (ICC 0.60 to 0.74) to excellent (ICC > 0.75). There was lower agreement for CCD angle measurement. Most widely used measurements for HD diagnosis (LCEA and Tönnis angle) demonstrated good to excellent inter-method reliability (ICC 0.71 to 0.86 and 0.82 to 0.90, respectively). The median reading time for the three readers and AI was 212 (IQR 197 to 230), 131 (IQR 126 to 147), 734 (IQR 690 to 786), and 41 (IQR 38 to 44) seconds, respectively. Conclusion. This study showed that AI-based software demonstrated reliable radiological assessment of patients with HD with significant interpretation-related time savings. Cite this article: Bone Jt Open 2022;3(11):877–884


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1754 - 1758
1 Dec 2021
Farrow L Zhong M Ashcroft GP Anderson L Meek RMD

There is increasing popularity in the use of artificial intelligence and machine-learning techniques to provide diagnostic and prognostic models for various aspects of Trauma & Orthopaedic surgery. However, correct interpretation of these models is difficult for those without specific knowledge of computing or health data science methodology. Lack of current reporting standards leads to the potential for significant heterogeneity in the design and quality of published studies. We provide an overview of machine-learning techniques for the lay individual, including key terminology and best practice reporting guidelines. Cite this article: Bone Joint J 2021;103-B(12):1754–1758


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims. Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. Methods. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures. Results. Out of 1,160 studies initially identified, 39 were included. Most studies (85%) were published between 2020 and 2024, with 82% using publicly available datasets, primarily the Osteoarthritis Initiative. ML methods were predominantly supervised, with significant variability in the definitions of OA progression: most studies focused on structural changes (59%), while fewer addressed pain progression or both. Deep learning was used in 44% of studies, while automated ML was used in 5%. There was a lack of standardization in evaluation metrics and limited external validation. Interpretability was explored in 54% of studies, primarily using SHapley Additive exPlanations. Conclusion. Our systematic review demonstrates the feasibility of ML models in predicting OA progression, but also uncovers critical limitations that currently restrict their clinical applicability. Future priorities should include diversifying data sources, standardizing outcome measures, enforcing rigorous validation, and integrating more sophisticated algorithms. This paradigm shift from predictive modelling to actionable clinical tools has the potential to transform patient care and disease management in orthopaedic practice. Cite this article: Bone Joint J 2024;106-B(11):1216–1222


Bone & Joint Open
Vol. 5, Issue 2 | Pages 139 - 146
15 Feb 2024
Wright BM Bodnar MS Moore AD Maseda MC Kucharik MP Diaz CC Schmidt CM Mir HR

Aims. While internet search engines have been the primary information source for patients’ questions, artificial intelligence large language models like ChatGPT are trending towards becoming the new primary source. The purpose of this study was to determine if ChatGPT can answer patient questions about total hip (THA) and knee arthroplasty (TKA) with consistent accuracy, comprehensiveness, and easy readability. Methods. We posed the 20 most Google-searched questions about THA and TKA, plus ten additional postoperative questions, to ChatGPT. Each question was asked twice to evaluate for consistency in quality. Following each response, we responded with, “Please explain so it is easier to understand,” to evaluate ChatGPT’s ability to reduce response reading grade level, measured as Flesch-Kincaid Grade Level (FKGL). Five resident physicians rated the 120 responses on 1 to 5 accuracy and comprehensiveness scales. Additionally, they answered a “yes” or “no” question regarding acceptability. Mean scores were calculated for each question, and responses were deemed acceptable if ≥ four raters answered “yes.”. Results. The mean accuracy and comprehensiveness scores were 4.26 (95% confidence interval (CI) 4.19 to 4.33) and 3.79 (95% CI 3.69 to 3.89), respectively. Out of all the responses, 59.2% (71/120; 95% CI 50.0% to 67.7%) were acceptable. ChatGPT was consistent when asked the same question twice, giving no significant difference in accuracy (t = 0.821; p = 0.415), comprehensiveness (t = 1.387; p = 0.171), acceptability (χ. 2. = 1.832; p = 0.176), and FKGL (t = 0.264; p = 0.793). There was a significantly lower FKGL (t = 2.204; p = 0.029) for easier responses (11.14; 95% CI 10.57 to 11.71) than original responses (12.15; 95% CI 11.45 to 12.85). Conclusion. ChatGPT answered THA and TKA patient questions with accuracy comparable to previous reports of websites, with adequate comprehensiveness, but with limited acceptability as the sole information source. ChatGPT has potential for answering patient questions about THA and TKA, but needs improvement. Cite this article: Bone Jt Open 2024;5(2):139–146


Bone & Joint Open
Vol. 4, Issue 11 | Pages 825 - 831
1 Nov 2023
Joseph PJS Khattak M Masudi ST Minta L Perry DC

Aims. Hip disease is common in children with cerebral palsy (CP) and can decrease quality of life and function. Surveillance programmes exist to improve outcomes by treating hip disease at an early stage using radiological surveillance. However, studies and surveillance programmes report different radiological outcomes, making it difficult to compare. We aimed to identify the most important radiological measurements and develop a core measurement set (CMS) for clinical practice, research, and surveillance programmes. Methods. A systematic review identified a list of measurements previously used in studies reporting radiological hip outcomes in children with CP. These measurements informed a two-round Delphi study, conducted among orthopaedic surgeons and specialist physiotherapists. Participants rated each measurement on a nine-point Likert scale (‘not important’ to ‘critically important’). A consensus meeting was held to finalize the CMS. Results. Overall, 14 distinct measurements were identified in the systematic review, with Reimer’s migration percentage being the most frequently reported. These measurements were presented over the two rounds of the Delphi process, along with two additional measurements that were suggested by participants. Ultimately, two measurements, Reimer’s migration percentage and femoral head-shaft angle, were included in the CMS. Conclusion. This use of a minimum standardized set of measurements has the potential to encourage uniformity across hip surveillance programmes, and may streamline the development of tools, such as artificial intelligence systems to automate the analysis in surveillance programmes. This core set should be the minimum requirement in clinical studies, allowing clinicians to add to this as needed, which will facilitate comparisons to be drawn between studies and future meta-analyses. Cite this article: Bone Jt Open 2023;4(11):825–831


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1574 - 1581
2 Nov 2020
Zhang S Sun J Liu C Fang J Xie H Ning B

Aims. The diagnosis of developmental dysplasia of the hip (DDH) is challenging owing to extensive variation in paediatric pelvic anatomy. Artificial intelligence (AI) may represent an effective diagnostic tool for DDH. Here, we aimed to develop an anteroposterior pelvic radiograph deep learning system for diagnosing DDH in children and analyze the feasibility of its application. Methods. In total, 10,219 anteroposterior pelvic radiographs were retrospectively collected from April 2014 to December 2018. Clinicians labelled each radiograph using a uniform standard method. Radiographs were grouped according to age and into ‘dislocation’ (dislocation and subluxation) and ‘non-dislocation’ (normal cases and those with dysplasia of the acetabulum) groups based on clinical diagnosis. The deep learning system was trained and optimized using 9,081 radiographs; 1,138 test radiographs were then used to compare the diagnoses made by deep learning system and clinicians. The accuracy of the deep learning system was determined using a receiver operating characteristic curve, and the consistency of acetabular index measurements was evaluated using Bland-Altman plots. Results. In all, 1,138 patients (242 males; 896 females; mean age 1.5 years (SD 1.79; 0 to 10) were included in this study. The area under the receiver operating characteristic curve, sensitivity, and specificity of the deep learning system for diagnosing hip dislocation were 0.975, 276/289 (95.5%), and 1,978/1,987 (99.5%), respectively. Compared with clinical diagnoses, the Bland-Altman 95% limits of agreement for acetabular index, as determined by the deep learning system from the radiographs of non-dislocated and dislocated hips, were -3.27° - 2.94° and -7.36° - 5.36°, respectively (p < 0.001). Conclusion. The deep learning system was highly consistent, more convenient, and more effective for diagnosing DDH compared with clinician-led diagnoses. Deep learning systems should be considered for analysis of anteroposterior pelvic radiographs when diagnosing DDH. The deep learning system will improve the current artificially complicated screening referral process. Cite this article: Bone Joint J 2020;102-B(11):1574–1581


Bone & Joint 360
Vol. 13, Issue 3 | Pages 18 - 20
3 Jun 2024

The June 2024 Hip & Pelvis Roundup360 looks at: Machine learning did not outperform conventional competing risk modelling to predict revision arthroplasty; Unravelling the risks: incidence and reoperation rates for femoral fractures post-total hip arthroplasty; Spinal versus general anaesthesia for hip arthroscopy: a COVID-19 pandemic- and opioid epidemic-driven study; Development and validation of a deep-learning model to predict total hip arthroplasty on radiographs; Ambulatory centres lead in same-day hip and knee arthroplasty success; Exploring the impact of smokeless tobacco on total hip arthroplasty outcomes: a deeper dive into postoperative complications.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 9 - 19
16 Jan 2024
Dijkstra H van de Kuit A de Groot TM Canta O Groot OQ Oosterhoff JH Doornberg JN

Aims

Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool.

Methods

A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 232 - 239
1 Mar 2024
Osmani HT Nicolaou N Anand S Gower J Metcalfe A McDonnell S

Aims

To identify unanswered questions about the prevention, diagnosis, treatment, and rehabilitation and delivery of care of first-time soft-tissue knee injuries (ligament injuries, patella dislocations, meniscal injuries, and articular cartilage) in children (aged 12 years and older) and adults.

Methods

The James Lind Alliance (JLA) methodology for Priority Setting Partnerships was followed. An initial survey invited patients and healthcare professionals from the UK to submit any uncertainties regarding soft-tissue knee injury prevention, diagnosis, treatment, and rehabilitation and delivery of care. Over 1,000 questions were received. From these, 74 questions (identifying common concerns) were formulated and checked against the best available evidence. An interim survey was then conducted and 27 questions were taken forward to the final workshop, held in January 2023, where they were discussed, ranked, and scored in multiple rounds of prioritization. This was conducted by healthcare professionals, patients, and carers.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 101 - 109
4 Mar 2024
Higashihira S Simpson SJ Morita A Suryavanshi JR Arnold CJ Natoli RM Greenfield EM

Aims

Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone.

Methods

S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs).


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Bone & Joint 360
Vol. 11, Issue 4 | Pages 41 - 42
1 Aug 2022


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims

The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs.

Methods

The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%).


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1279 - 1280
1 Dec 2022
Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1197 - 1198
1 Nov 2024
Haddad FS


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1233 - 1234
1 Dec 2023
Haddad FS