header advert
You currently have no access to view or download this content. Please log in with your institutional or personal account if you should have access to through either of these
The Bone & Joint Journal Logo

Receive monthly Table of Contents alerts from The Bone & Joint Journal

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Get Access locked padlock

Children's Orthopaedics

Clinical application of artificial intelligence-assisted diagnosis using anteroposterior pelvic radiographs in children with developmental dysplasia of the hip



Download PDF

Abstract

Aims

The diagnosis of developmental dysplasia of the hip (DDH) is challenging owing to extensive variation in paediatric pelvic anatomy. Artificial intelligence (AI) may represent an effective diagnostic tool for DDH. Here, we aimed to develop an anteroposterior pelvic radiograph deep learning system for diagnosing DDH in children and analyze the feasibility of its application.

Methods

In total, 10,219 anteroposterior pelvic radiographs were retrospectively collected from April 2014 to December 2018. Clinicians labelled each radiograph using a uniform standard method. Radiographs were grouped according to age and into ‘dislocation’ (dislocation and subluxation) and ‘non-dislocation’ (normal cases and those with dysplasia of the acetabulum) groups based on clinical diagnosis. The deep learning system was trained and optimized using 9,081 radiographs; 1,138 test radiographs were then used to compare the diagnoses made by deep learning system and clinicians. The accuracy of the deep learning system was determined using a receiver operating characteristic curve, and the consistency of acetabular index measurements was evaluated using Bland-Altman plots.

Results

In all, 1,138 patients (242 males; 896 females; mean age 1.5 years (SD 1.79; 0 to 10) were included in this study. The area under the receiver operating characteristic curve, sensitivity, and specificity of the deep learning system for diagnosing hip dislocation were 0.975, 276/289 (95.5%), and 1,978/1,987 (99.5%), respectively. Compared with clinical diagnoses, the Bland-Altman 95% limits of agreement for acetabular index, as determined by the deep learning system from the radiographs of non-dislocated and dislocated hips, were -3.27° - 2.94° and -7.36° - 5.36°, respectively (p < 0.001).

Conclusion

The deep learning system was highly consistent, more convenient, and more effective for diagnosing DDH compared with clinician-led diagnoses. Deep learning systems should be considered for analysis of anteroposterior pelvic radiographs when diagnosing DDH. The deep learning system will improve the current artificially complicated screening referral process.

Cite this article: Bone Joint J 2020;102-B(11):1574–1581.


Correspondence should be sent to Jun Sun. E-mail:

J. Sun and B. Ning contributed equally to this work.


For access options please click here