Advertisement for orthosearch.org.uk
Results 361 - 380 of 632
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 3 - 10
1 Apr 2017
Parvizi J Shohat N Gehrke T

The World Health Organization (WHO) and the Centre for Disease Control and Prevention (CDC) recently published guidelines for the prevention of surgical site infection. The WHO guidelines, if implemented worldwide, could have an immense impact on our practices and those of the CDC have implications for healthcare policy in the United States.

Our aim was to review the strategies for prevention of periprosthetic joint infection in light of these and other recent guidelines.

Cite this article: Bone Joint J 2017;99-B(4 Supple B):3–10.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 245 - 252
1 Apr 2017
Fu M Ye Q Jiang C Qian L Xu D Wang Y Sun P Ouyang J

Objectives

Many studies have investigated the kinematics of the lumbar spine and the morphological features of the lumbar discs. However, the segment-dependent immediate changes of the lumbar intervertebral space height during flexion-extension motion are still unclear. This study examined the changes of intervertebral space height during flexion-extension motion of lumbar specimens.

Methods

First, we validated the accuracy and repeatability of a custom-made mechanical loading equipment set-up. Eight lumbar specimens underwent CT scanning in flexion, neural, and extension positions by using the equipment set-up. The changes in the disc height and distance between adjacent two pedicle screw entry points (DASEP) of the posterior approach at different lumbar levels (L3/4, L4/5 and L5/S1) were examined on three-dimensional lumbar models, which were reconstructed from the CT images.


Bone & Joint 360
Vol. 6, Issue 1 | Pages 13 - 16
1 Feb 2017


Bone & Joint Research
Vol. 6, Issue 2 | Pages 108 - 112
1 Feb 2017
Itabashi T Narita K Ono A Wada K Tanaka T Kumagai G Yamauchi R Nakane A Ishibashi Y

Objectives

The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery.

Materials and Methods

Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives

To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects.

Materials and Methods

Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation.


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 73 - 77
1 Jan 2017
Frew NM Cannon T Nichol T Smith TJ Stockley I

Aims

Vancomycin is commonly added to acrylic bone cement during revision arthroplasty surgery. Proprietary cement preparations containing vancomycin are available, but are significantly more expensive. We investigated whether the elution of antibiotic from ‘home-made’ cement containing vancomycin was comparable with more expensive commercially available vancomycin impregnated cement.

Materials and Methods

A total of 18 cement discs containing either proprietary CopalG+V; or ‘home-made’ CopalR+G with vancomycin added by hand, were made. Each disc contained the same amount of antibiotic (0.5 g gentamycin, 2 g vancomycin) and was immersed in ammonium acetate buffer in a sealed container. Fluid from each container was sampled at eight time points over a two-week period. The concentrations of gentamicin and vancomycin in the fluid were analysed using high performance liquid chromatography mass spectrometry.


Aims

The Intraosseous Transcutaneous Amputation Prosthesis (ITAP) may improve quality of life for amputees by avoiding soft-tissue complications associated with socket prostheses and by improving sensory feedback and function. It relies on the formation of a seal between the soft tissues and the implant and currently has a flange with drilled holes to promote dermal attachment. Despite this, infection remains a significant risk. This study explored alternative strategies to enhance soft-tissue integration.

Materials and Methods

The effect of ITAP pins with a fully porous titanium alloy flange with interconnected pores on soft-tissue integration was investigated. The flanges were coated with fibronectin-functionalised hydroxyapatite and silver coatings, which have been shown to have an antibacterial effect, while also promoting viable fibroblast growth in vitro. The ITAP pins were implanted along the length of ovine tibias, and histological assessment was undertaken four weeks post-operatively.


Bone & Joint Research
Vol. 4, Issue 5 | Pages 70 - 77
1 May 2015
Gupta A Liberati TA Verhulst SJ Main BJ Roberts MH Potty AGR Pylawka TK El-Amin III SF

Objectives

The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration.

Methods

A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed.


Bone & Joint Research
Vol. 3, Issue 9 | Pages 273 - 279
1 Sep 2014
Vasiliadis ES Kaspiris A Grivas TB Khaldi L Lamprou M Pneumaticos SG Nikolopoulos K Korres DS Papadimitriou E

Objectives

The aim of this study was to examine whether asymmetric loading influences macrophage elastase (MMP12) expression in different parts of a rat tail intervertebral disc and growth plate and if MMP12 expression is correlated with the severity of the deformity.

Methods

A wedge deformity between the ninth and tenth tail vertebrae was produced with an Ilizarov-type mini external fixator in 45 female Wistar rats, matched for their age and weight. Three groups were created according to the degree of deformity (10°, 30° and 50°). A total of 30 discs and vertebrae were evaluated immunohistochemically for immunolocalisation of MMP12 expression, and 15 discs were analysed by western blot and zymography in order to detect pro- and active MMP12.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 824 - 829
1 Jun 2015
Cho CH Lho YM Ha E Hwang I Song KS Min BW Bae KC Kim DH

The purpose of this study was to evaluate the expression of acid-sensing ion channels (ASICs) in the capsule and synovial fluid of patients with frozen shoulder. Capsular tissue and synovial fluid were obtained from 18 patients with idiopathic frozen shoulder (FS group) and 18 patients with instability of the shoulder (control group). The expressions of ASIC1, ASIC2, and ASIC3 in the capsule were determined using the reverse transcriptase-polymerase chain reaction, immunoblot analysis, and immunohistochemistry (IHC). The concentrations in synovial fluid were evaluated using an enzyme-linked immunosorbent assay.

The mRNA expression of ASIC1, ASIC2 and ASIC3 in the capsule were significantly increased in the FS group compared with the control group. The protein levels of these three ASICs were also increased. The increased expressions were confirmed by IHC. Of the ASICs, ASIC3 showed the greatest increase in both mRNA and levels of expression compared with the control group. The levels of ASIC1 and ASIC3 in synovial fluid were significantly increased in the FS group.

This study suggests that ASICs may play a role as mediators of inflammatory pain and be involved in the pathogenesis of frozen shoulder.

Cite this article: Bone Joint J 2015;97-B:824–9.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 82 - 89
1 Feb 2017
Nagra NS Zargar N Smith RDJ Carr AJ

Objectives

All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors.

Materials and Methods

A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human humeral head rotator cuff repair models (n = 24). This construct underwent cyclic loading applied by a mechanical testing rig (Zwick/Roell). Ultimate load to failure, gap formation at 50, 100, 150 and 200 cycles, and failure mechanism were recorded. Significance was set at p < 0.05.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 602 - 609
1 Dec 2016
Muto T Kokubu T Mifune Y Inui A Sakata R Harada Y Takase F Kurosaka M

Objectives

Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß.

Methods

Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1470 - 1474
1 Nov 2015
Selvarajah E Hooper G Grabowski K Frampton C Woodfield TBF Inglis G

Polyethylene wear debris can cause osteolysis and the failure of total hip arthroplasty. We present the five-year wear rates of a highly cross-linked polyethylene (X3) bearing surface when used in conjunction with a 36 mm ceramic femoral head.

This was a prospective study of a cohort of 100 THAs in 93 patients. Pain and activity scores were measured pre- and post-operatively. Femoral head penetration was measured at two months, one year, two years and at five years using validated edge-detecting software (PolyWare Auto).

At a mean of 5.08 years (3.93 to 6.01), 85 hips in 78 patients were available for study. The mean age of these patients was 59.08 years (42 to 73, the mean age of males (n = 34) was 59.15 years, and females (n = 44) was 59.02 years). All patients had significant improvement in their functional scores (p < 0.001). The steady state two-dimensional linear wear rate was 0.109 mm/year. The steady state volumetric wear rate was 29.61 mm3/year. No significant correlation was found between rate of wear and age (p = 0.34), acetabular component size (p = 0.12) or clinical score (p = 0.74).

Our study shows low steady state wear rates at five years in X3 highly cross-linked polyethylene in conjunction with a 36 mm ceramic femoral head. The linear wear rate was almost identical to the osteolysis threshold of 0.1 mm/year recommended in the literature.

Cite this article: Bone Joint J 2015;97-B:1470–4.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives

To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone.

Methods

Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1152 - 1156
1 Aug 2015
Gupta S Cafferky D Cowie F Riches P Mahendra A

Extracorporeal irradiation of an excised tumour-bearing segment of bone followed by its re-implantation is a technique used in bone sarcoma surgery for limb salvage when the bone is of reasonable quality. There is no agreement among previous studies about the dose of irradiation to be given: up to 300 Gy have been used.

We investigated the influence of extracorporeal irradiation on the elastic and viscoelastic properties of bone. Bone was harvested from mature cattle and subdivided into 13 groups: 12 were exposed to increasing levels of irradiation: one was not and was used as a control. The specimens, once irradiated, underwent mechanical testing in saline at 37°C.

The mechanical properties of each group, including Young’s modulus, storage modulus and loss modulus, were determined experimentally and compared with the control group.

There were insignificant changes in all of these mechanical properties with an increasing level of irradiation.

We conclude that the overall mechanical effect of high levels of extracorporeal irradiation (300 Gy) on bone is negligible. Consequently the dose can be maximised to reduce the risk of local tumour recurrence.

Cite this article: Bone Joint J 2015;97-B:1152–6.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 523 - 530
1 Oct 2016
Yuan Y Zhang GQ Chai W Ni M Xu C Chen JY

Objectives

Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage.

Materials and Methods

Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1.


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1554 - 1562
1 Nov 2016
Martinkevich P Rahbek O Stilling M Pedersen LK Gottliebsen M Søballe K Møller-Madsen B

Aims

To compare the structural durability of hydroxyapatite-tricalcium phosphate (HATCP) to autologous iliac crest bone graft in calcaneal lengthening osteotomy (CLO) for pes planovalgus in childhood.

Patients and Methods

We present the interim results of ten patients (HATCP, n = 6 and autograft, n = 5) with a mean age of 11.5 years (8.2 to 14.2) from a randomised controlled non-inferiority trial with six months follow-up. The primary outcome was the stability of the osteotomy as measured by radiostereometric analysis. A non-inferiority margin of ≤ 2 mm osteotomy compression was set.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1126 - 1131
1 Aug 2016
Shiels SM Cobb RR Bedigrew KM Ritter G Kirk JF Kimbler A Finger Baker I Wenke JC

Aims

Demineralised bone matrix (DBM) is rarely used for the local delivery of prophylactic antibiotics. Our aim, in this study, was to show that a graft with a bioactive glass and DBM combination, which is currently available for clinical use, can be loaded with tobramycin and release levels of antibiotic greater than the minimum inhibitory concentration for Staphylococcus aureus without interfering with the bone healing properties of the graft, thus protecting the graft and surrounding tissues from infection.

Materials and Methods

Antibiotic was loaded into a graft and subsequently evaluated for drug elution kinetics and the inhibition of bacterial growth. A rat femoral condylar plug model was used to determine the effect of the graft, loaded with antibiotic, on bone healing.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1062 - 1068
1 Aug 2016
Singh G Deutloff N Maertens N Meyer H Awiszus F Feuerstein B Roessner A Lohmann CH

Aims

Tissue responses to debris formed by abrasion of polymethylmethacrylate (PMMA) spacers at two-stage revision arthroplasty for prosthetic joint infection are not well described. We hypothesised that PMMA debris induces immunomodulation in periprosthetic tissues.

Patients and Methods

Samples of tissue were taken during 35 two-stage revision arthroplasties (nine total hip and 26 total knee arthroplasties) in patients whose mean age was 67 years (44 to 85). Fourier transform infrared microscopy was used to confirm the presence of PMMA particles. Histomorphometry was performed using Sudan Red and Haematoxylin-Eosin staining. CD-68, CD-20, CD-11(c), CD-3 and IL-17 antibodies were used to immunophenotype the inflammatory cells. All slides were scored semi-quantitatively using the modified Willert scoring system.