A common situation presenting to the orthopaedic
surgeon today is a worn acetabular liner with substantial acetabular
and pelvic osteolysis. The surgeon has many options for dealing
with osteolytic defects. These include allograft, calcium based
substitutes, demineralised bone matrix, or combinations of these
options with or without addition of platelet rich plasma. To date
there are no clinical studies to determine the efficacy of using
bone-stimulating materials in osteolytic defects at the time of
revision surgery and there are surprisingly few studies demonstrating
the clinical efficacy of these treatment options. Even when radiographs
appear to demonstrate incorporation of graft material CT studies
have shown that incorporation is incomplete. The surgeon, in choosing
a graft material for a surgical procedure must take into account
the efficacy, safety, cost and convenience of that material. Cite this article:
To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone. Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.Objectives
Methods
The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.Objectives
Methods
Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.Objectives
Materials and Methods
Injury to the anterior cruciate ligament (ACL)
is one of the most devastating and frequent injuries of the knee. Surgical
reconstruction is the current standard of care for treatment of
ACL injuries in active patients. The widespread adoption of ACL
reconstruction over primary repair was based on early perception
of the limited healing capacity of the ACL. Although the majority
of ACL reconstruction surgeries successfully restore gross joint stability,
post-traumatic osteoarthritis is commonplace following these injuries,
even with ACL reconstruction. The development of new techniques
to limit the long-term clinical sequelae associated with ACL reconstruction
has been the main focus of research over the past decades. The improved
knowledge of healing, along with recent advances in tissue engineering
and regenerative medicine, has resulted in the discovery of novel
biologically augmented ACL-repair techniques that have satisfactory
outcomes in preclinical studies. This instructional review provides
a summary of the latest advances made in ACL repair. Cite this article:
Between 2005 and 2012, 50 patients (23 female, 27 male) with
nonunion of the humeral shaft were included in this retrospective
study. The mean age was 51.3 years (14 to 88). The patients had
a mean of 1.5 prior operations ( All patients were assessed according to a specific risk score
in order to devise an optimal and individual therapy plan consistent
with the Diamond Concept. In 32 cases (64%), a change in the osteosynthesis
to an angular stable locking compression plate was performed. According
to the individual risk an additional bone graft and/or bone morphogenetic
protein-7 (BMP-7) were applied. A successful consolidation of the nonunion was observed in 37
cases (80.4%) with a median healing time of six months (IQR 6).
Younger patients showed significantly better consolidation. Four
patients were lost to follow-up. Revision was necessary in a total
of eight (16%) cases. In the initial treatment, intramedullary nailing
was most common. Methods
Results
Neuropathic changes in the foot are common with
a prevalence of approximately 1%. The diagnosis of neuropathic arthropathy
is often delayed in diabetic patients with harmful consequences
including amputation. The appropriate diagnosis and treatment can
avoid an extensive programme of treatment with significant morbidity
for the patient, high costs and delayed surgery. The pathogenesis
of a Charcot foot involves repetitive micro-trauma in a foot with impaired
sensation and neurovascular changes caused by pathological innervation
of the blood vessels. In most cases, changes are due to a combination
of both pathophysiological factors. The Charcot foot is triggered
by a combination of mechanical, vascular and biological factors
which can lead to late diagnosis and incorrect treatment and eventually
to destruction of the foot. This review aims to raise awareness of the diagnosis of the Charcot
foot (diabetic neuropathic osteoarthropathy and the differential
diagnosis, erysipelas, peripheral arterial occlusive disease) and
describe the ways in which the diagnosis may be made. The clinical
diagnostic pathways based on different classifications are presented. Cite this article:
The purpose of this study was to evaluate the
expression of acid-sensing ion channels (ASICs) in the capsule and synovial
fluid of patients with frozen shoulder. Capsular tissue and synovial
fluid were obtained from 18 patients with idiopathic frozen shoulder
(FS group) and 18 patients with instability of the shoulder (control
group). The expressions of ASIC1, ASIC2, and ASIC3 in the capsule
were determined using the reverse transcriptase-polymerase chain
reaction, immunoblot analysis, and immunohistochemistry (IHC). The
concentrations in synovial fluid were evaluated using an enzyme-linked
immunosorbent assay. The mRNA expression of ASIC1, ASIC2 and ASIC3 in the capsule
were significantly increased in the FS group compared with the control
group. The protein levels of these three ASICs were also increased.
The increased expressions were confirmed by IHC. Of the ASICs, ASIC3
showed the greatest increase in both mRNA and levels of expression
compared with the control group. The levels of ASIC1 and ASIC3 in
synovial fluid were significantly increased in the FS group. This study suggests that ASICs may play a role as mediators of
inflammatory pain and be involved in the pathogenesis of frozen
shoulder. Cite this article:
The October 2013 Foot &
Ankle Roundup360 looks at: Operative treatment of calcaneal fractures advantageous in the long term?; Varus ankles and arthroplasty; Reducing autograft complications in foot and ankle surgery; The biomechanics of ECP in plantar fasciitis; Minimally invasive first ray surgery; Alcohol: better drunk than injected?; Is it different in the foot?; It’s all about the temperature
Induced membrane technique is a relatively new technique in the reconstruction of large bone defects. It involves the implantation of polymethylmethacrylate (PMMA) cement in the bone defects to induce the formation of membranes after radical debridement and reconstruction of bone defects using an autologous cancellous bone graft in a span of four to eight weeks. The purpose of this study was to explore the clinical outcomes of the induced membrane technique for the treatment of post-traumatic osteomyelitis in 32 patients. A total of 32 cases of post-traumatic osteomyelitis were admitted to our department between August 2011 and October 2012. This retrospective study included 22 men and ten women, with a mean age of 40 years (19 to 70). Within this group there were 20 tibias and 12 femurs with a mean defect of 5 cm (1.5 to 12.5). Antibiotic-loaded PMMA cement was inserted into the defects after radical debridement. After approximately eight weeks, the defects were implanted with bone graft.Objectives
Methods
Osteochondral lesions (OCLs) occur in up to 70%
of sprains and fractures involving the ankle. Atraumatic aetiologies have
also been described. Techniques such as microfracture, and replacement
strategies such as autologous osteochondral transplantation, or
autologous chondrocyte implantation are the major forms of surgical
treatment. Current literature suggests that microfracture is indicated
for lesions up to 15 mm in diameter, with replacement strategies
indicated for larger or cystic lesions. Short- and medium-term results
have been reported, where concerns over potential deterioration
of fibrocartilage leads to a need for long-term evaluation. Biological augmentation may also be used in the treatment of
OCLs, as they potentially enhance the biological environment for
a natural healing response. Further research is required to establish
the critical size of defect, beyond which replacement strategies
should be used, as well as the most appropriate use of biological augmentation.
This paper reviews the current evidence for surgical management
and use of biological adjuncts for treatment of osteochondral lesions
of the talus. Cite this article:
Surgical intervention in patients with bone metastases from breast
cancer is dependent on the estimated survival of the patient. The
purpose of this paper was to identify factors that would predict
survival so that specific decisions could be made in terms of surgical
(or non-surgical) management. The records of 113 consecutive patients (112 women) with metastatic
breast cancer were analysed for clinical, radiological, serological
and surgical outcomes. Their median age was 61 years (interquartile
range 29 to 90) and the median duration of follow-up was 1.6 years
(standard deviation (Aims
Methods
Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge. Animal models are often used in this
field of research as they offer an attractive framework to examine
the cascade of processes that occur throughout both tendon pathology and
repair. This review discusses the structural, mechanical, and biological
changes that occur throughout tendon pathology in animal models,
as well as strategies for the improvement of tendon healing. Cite this article:
The major problem with repair of an articular cartilage injury
is the extensive difference in the structure and function of regenerated,
compared with normal cartilage. Our work investigates the feasibility
of repairing articular osteochondral defects in the canine knee
joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate
(ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells
(BMSCs) and assesses its biological compatibility. The bone–cartilage scaffold was prepared as a laminated composite,
using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer
of polylactic acid–hydroxyacetic acid as the bony scaffold, and
sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous
scaffold. Ten-to 12-month-old hybrid canines were randomly divided
into an experimental group and a control group. BMSCs were obtained
from the iliac crest of each animal, and only those of the third
generation were used in experiments. An articular osteochondral
defect was created in the right knee of dogs in both groups. Those
in the experimental group were treated by implanting the composites
consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs.
Those in the control group were left untreated.Objectives
Methods
We hypothesised that cells obtained via a Reamer–Irrigator–Aspirator
(RIA) system retain substantial osteogenic potential and are at
least equivalent to graft harvested from the iliac crest. Graft
was harvested using the RIA in 25 patients (mean age 37.6 years
(18 to 68)) and from the iliac crest in 21 patients (mean age 44.6
years (24 to 78)), after which ≥ 1 g of bony particulate graft material
was processed from each. Initial cell viability was assessed using Trypan
blue exclusion, and initial fluorescence-activated cell sorting
(FACS) analysis for cell lineage was performed. After culturing
the cells, repeat FACS analysis for cell lineage was performed and
enzyme-linked immunosorbent assay (ELISA) for osteocalcin, and Alizarin
red staining to determine osteogenic potential. Cells obtained via
RIA or from the iliac crest were viable and matured into mesenchymal
stem cells, as shown by staining for the specific mesenchymal antigens
CD90 and CD105. For samples from both RIA and the iliac crest there
was a statistically significant increase in bone production (both
p <
0.001), as demonstrated by osteocalcin production after induction. Medullary autograft cells harvested using RIA are viable and
osteogenic. Cell viability and osteogenic potential were similar
between bone grafts obtained from both the RIA system and the iliac
crest. Cite this article:
Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.Aims
Methods
Tibial nonunion represents a spectrum of conditions
which are challenging to treat, and optimal management remains unclear
despite its high rate of incidence. We present 44 consecutive patients
with 46 stiff tibial nonunions, treated with hexapod external fixators
and distraction to achieve union and gradual deformity correction.
There were 31 men and 13 women with a mean age of 35 years (18 to
68) and a mean follow-up of 12 months (6 to 40). No tibial osteotomies
or bone graft procedures were performed. Bony union was achieved
after the initial surgery in 41 (89.1%) tibias. Four persistent
nonunions united after repeat treatment with closed hexapod distraction,
resulting in bony union in 45 (97.8%) patients. The mean time to
union was 23 weeks (11 to 49). Leg-length was restored to within
1 cm of the contralateral side in all tibias. Mechanical alignment
was restored to within 5° of normal in 42 (91.3%) tibias. Closed
distraction of stiff tibial nonunions can predictably lead to union
without further surgery or bone graft. In addition to generating
the required distraction to achieve union, hexapod circular external
fixators can accurately correct concurrent deformities and limb-length
discrepancies. Cite this article:
The August 2014 Research Roundup360 looks at: Antibiotic loaded ceramic of use in osteomyelitis; fibronectin implicated in cartilage degeneration; Zinc Chloride accelerates fracture healing in rats; advertisements and false claims; Net Promoter Score: substance or rhetoric?; aspirin for venous thromboembolism prophylaxis and dissection, stress and the soul.
MicroRNAs (miRNAs ) are small non-coding RNAs
that regulate gene expression. We hypothesised that the functions
of certain miRNAs and changes to their patterns of expression may
be crucial in the pathogenesis of nonunion. Healing fractures and
atrophic nonunions produced by periosteal cauterisation were created
in the femora of 94 rats, with 1:1 group allocation. At post-fracture
days three, seven, ten, 14, 21 and 28, miRNAs were extracted from
the newly generated tissue at the fracture site. Microarray and
real-time polymerase chain reaction (PCR) analyses of day 14 samples
revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p,
miR-146b-5p and miR-223-3p, were highly upregulated in nonunion.
Real-time PCR analysis further revealed that, in nonunion, the expression
levels of all five of these miRNAs peaked on day 14 and declined
thereafter. Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p,
miR-146b-5p and miR-223-3p may play an important role in the development
of nonunion. These findings add to the understanding of the molecular mechanism
for nonunion formation and may lead to the development of novel
therapeutic strategies for its treatment. Cite this article: