We have investigated the anatomy of the proximal part of the ulna to assess its influence on the use of plates in the management of fractures at this site. We examined 54 specimens from
As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in hip development, enabling its nutrition through vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same developmental origin as the synovium and articular cartilage and is a biologically active area. Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, but also for their biological capacity as a source of cytokines, immune cells, and chondrogenic stem cells. Cite this article:
We evaluated the biomechanical properties of two different methods of fixation for unstable fractures of the proximal humerus. Biomechanical testing of the two groups, locking plate alone (LP), and locking plate with a fibular strut graft (LPSG), was performed using seven pairs of human
The purpose of this anatomical study was to explore the morphological variations of the semitendinosus and gracilis tendons in length and cross-section and the statistical relationship between length, cross-section, and body height. We studied the legs of 93 humans in 136
Osteoid osteoma is treated primarily by radiofrequency
(RF) ablation. However, there is little information about the distribution
of heat in bone during the procedure and its safety. We constructed
a model of osteoid osteoma to assess the distribution of heat in
bone and to define the margins of safety for ablation. Cavities
were drilled in
Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component? A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.Aims
Methods
The objective of this systematic review was to describe trapeziectomy outcomes and complications in the context of osteoarthritis of the base of the thumb after a five-year minimum follow-up. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to guide study design, and 267 full-text articles were assessed for eligibility. After exclusion criteria application, 22 studies were included, involving 728 patients and 823 trapeziectomies. Outcomes included pre- and postoperative clinical and radiological characteristics. Complications and revisions were recorded.Aims
Methods
Using human
Recently, gender-specific designs of total knee replacement have been developed to accommodate anatomical differences between males and females. We examined a group of male and female distal femora matched for age and height, to determine if there was a difference in the aspect ratio (mediolateral distance versus anteroposterior distance) and the height of the anterior flange between the genders. The Hamann-Todd Collection provided 1207 skeletally mature
Achieving deep flexion after total knee replacement remains a challenge. In this study we compared the soft-tissue tension and tibiofemoral force in a mobile-bearing posterior cruciate ligament-sacrificing total knee replacement, using equal flexion and extension gaps, and with the gaps increased by 2 mm each. The tests were conducted during passive movement in five
Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a
Our aim was to assess the intra- and inter-observer reliability in the establishment of the anterior pelvic plane used in imageless computer-assisted navigation. From this we determined the subsequent effects on version and inclination of the acetabular component. A
This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting. Impaction allografting was carried out in human
The clinical diagnosis of a partial tear of the
anterior cruciate ligament (ACL) is still subject to debate. Little
is known about the contribution of each ACL bundle during the Lachman
test. We investigated this using six fresh-frozen
The aim of this study was to analyze the association between the shape of the distal radius sigmoid notch and triangular fibrocartilage complex (TFCC) foveal tear. Between 2013 and 2018, patients were retrospectively recruited in two different groups. The patient group comprised individuals who underwent arthroscopic transosseous TFCC foveal repair for foveal tear of the wrist. The control group comprised individuals presenting with various diseases around wrist not affecting the TFCC. The study recruited 176 patients (58 patients, 118 controls). The sigmoid notch shape was classified into four types (flat-face, C-, S-, and ski-slope types) and three radiological parameters related to the sigmoid notch (namely, the radius curvature, depth, and version angle) were measured. The association of radiological parameters and sigmoid notch types with the TFCC foveal tear was investigated in univariate and multivariate analyses. Receiver operating characteristic curves were used to estimate a cut-off for any statistically significant variables.Aims
Methods
Many biomechanical studies have shown that the weakest biomechanical point of a rotator cuff repair is the suture-tendon interface at the medial row. We developed a novel double rip-stop (DRS) technique to enhance the strength at the medial row for rotator cuff repair. The objective of this study was to evaluate the biomechanical properties of the DRS technique with the conventional suture-bridge (SB) technique and to evaluate the biomechanical performance of the DRS technique with medial row knots. A total of 24 fresh-frozen porcine shoulders were used. The infraspinatus tendons were sharply dissected and randomly repaired by one of three techniques: SB repair (SB group), DRS repair (DRS group), and DRS with medial row knots repair (DRSK group). Specimens were tested to failure. In addition, 3 mm gap formation was measured and ultimate failure load, stiffness, and failure modes were recorded.Aims
Methods