Advertisement for orthosearch.org.uk
Results 1 - 20 of 189
Results per page:
Bone & Joint Research
Vol. 6, Issue 11 | Pages 623 - 630
1 Nov 2017
Suh D Kang K Son J Kwon O Baek C Koh Y

Objectives. Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Methods. Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated. Results. There was greater total contact stress in the varus alignment than in the valgus, with more marked difference on the medial side. An increase in ligament force was clearly demonstrated, especially in the valgus alignment and force exerted on the medial collateral ligament also increased. Conclusion. These results highlight the importance of accurate surgical reconstruction of the coronal tibial alignment of the knee joint. Varus and valgus alignments will influence wear and ligament stability, respectively in TKA. Cite this article: D-S. Suh, K-T. Kang, J. Son, O-R. Kwon, C. Baek, Y-G. Koh. Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty: A Finite Element Analysis. Bone Joint Res 2017;6:623–630. DOI: 10.1302/2046-3758.611.BJR-2016-0088.R2


Objectives. Posterior condylar offset (PCO) and posterior tibial slope (PTS) are critical factors in total knee arthroplasty (TKA). A computational simulation was performed to evaluate the biomechanical effect of PCO and PTS on cruciate retaining TKA. Methods. We generated a subject-specific computational model followed by the development of ± 1 mm, ± 2 mm and ± 3 mm PCO models in the posterior direction, and -3°, 0°, 3° and 6° PTS models with each of the PCO models. Using a validated finite element (FE) model, we investigated the influence of the changes in PCO and PTS on the contact stress in the patellar button and the forces on the posterior cruciate ligament (PCL), patellar tendon and quadriceps muscles under the deep knee-bend loading conditions. Results. Contact stress on the patellar button increased and decreased as PCO translated to the anterior and posterior directions, respectively. In addition, contact stress on the patellar button decreased as PTS increased. These trends were consistent in the FE models with altered PCO. Higher quadriceps muscle and patellar tendon force are required as PCO translated in the anterior direction with an equivalent flexion angle. However, as PTS increased, quadriceps muscle and patellar tendon force reduced in each PCO condition. The forces exerted on the PCL increased as PCO translated to the posterior direction and decreased as PTS increased. Conclusion. The change in PCO alternatively provided positive and negative biomechanical effects, but it led to a reduction in a negative biomechanical effect as PTS increased. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, J-S. Lee, S. K. Kwon. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res 2018;7:69–78. DOI: 10.1302/2046-3758.71.BJR-2017-0143.R1


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 442 - 448
1 Apr 2020
Kayani B Konan S Ahmed SS Chang JS Ayuob A Haddad FS

Aims

The objectives of this study were to assess the effect of anterior cruciate ligament (ACL) resection on flexion-extension gaps, mediolateral soft tissue laxity, maximum knee extension, and limb alignment during primary total knee arthroplasty (TKA).

Methods

This prospective study included 140 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess study outcomes pre- and post-ACL resection with knee extension and 90° knee flexion. This study included 76 males (54.3%) and 64 females (45.7%) with a mean age of 64.1 years (SD 6.8) at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1° varus (SD 4.6° varus).


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 344 - 350
1 Mar 2009
Luyckx T Didden K Vandenneucker H Labey L Innocenti B Bellemans J

The purpose of this study was to test the hypothesis that patella alta leads to a less favourable situation in terms of patellofemoral contact force, contact area and contact pressure than the normal patellar position, and thereby gives rise to anterior knee pain. A dynamic knee simulator system based on the Oxford rig and allowing six degrees of freedom was adapted in order to simulate and record the dynamic loads during a knee squat from 30° to 120° flexion under physiological conditions. Five different configurations were studied, with variable predetermined patellar heights. The patellofemoral contact force increased with increasing knee flexion until contact occurred between the quadriceps tendon and the femoral trochlea, inducing load sharing. Patella alta caused a delay of this contact until deeper flexion. As a consequence, the maximal patellofemoral contact force and contact pressure increased significantly with increasing patellar height (p < 0.01). Patella alta was associated with the highest maximal patellofemoral contact force and contact pressure. When averaged across all flexion angles, a normal patellar position was associated with the lowest contact pressures. Our results indicate that there is a biomechanical reason for anterior knee pain in patients with patella alta


Bone & Joint Research
Vol. 5, Issue 11 | Pages 552 - 559
1 Nov 2016
Kang K Koh Y Son J Kwon O Baek C Jung SH Park KK

Objectives. Malrotation of the femoral component can result in post-operative complications in total knee arthroplasty (TKA), including patellar maltracking. Therefore, we used computational simulation to investigate the influence of femoral malrotation on contact stresses on the polyethylene (PE) insert and on the patellar button as well as on the forces on the collateral ligaments. Materials and Methods. Validated finite element (FE) models, for internal and external malrotations from 0° to 10° with regard to the neutral position, were developed to evaluate the effect of malrotation on the femoral component in TKA. Femoral malrotation in TKA on the knee joint was simulated in walking stance-phase gait and squat loading conditions. Results. Contact stress on the medial side of the PE insert increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. There was an opposite trend in the lateral side of the PE insert case. Contact stress on the patellar button increased with internal femoral malrotation and decreased with external femoral malrotation in both stance-phase gait and squat loading conditions. In particular, contact stress on the patellar button increased by 98% with internal malrotation of 10° in the squat loading condition. The force on the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) increased with internal and external femoral malrotations, respectively. Conclusions. These findings provide support for orthopaedic surgeons to determine a more accurate femoral component alignment in order to reduce post-operative PE problems. Cite this article: K-T. Kang, Y-G. Koh, J. Son, O-R. Kwon, C. Baek, S. H. Jung, K. K. Park. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016;5:552–559. DOI: 10.1302/2046-3758.511.BJR-2016-0107.R1


Aims

The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery.

Methods

A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model.


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1628 - 1633
1 Dec 2015
Elmadag M Uzer G Yildiz F Erden T Bilsel K Büyükpinarbasili N Üsümez A Bozdag E Sen C

This animal study compares different methods of performing an osteotomy, including using an Erbium-doped Yttrium Aluminum Garnet laser, histologically, radiologically and biomechanically. A total of 24 New Zealand rabbits were divided into four groups (Group I: multihole-drilling; Group II: Gigli saw; Group III: electrical saw blade and Group IV: laser). A proximal transverse diaphyseal osteotomy was performed on the right tibias of the rabbits after the application of a circular external fixator. The rabbits were killed six weeks after the procedure, the operated tibias were resected and radiographs taken. . The specimens were tested biomechanically using three-point bending forces, and four tibias from each group were examined histologically. Outcome parameters were the biomechanical stability of the tibias as assessed by the failure to load and radiographic and histological examination of the osteotomy site. . The osteotomies healed in all specimens both radiographically and histologically. The differences in the mean radiographic (p = 0.568) and histological (p = 0.71) scores, and in the mean failure loads (p = 0.180) were not statistically significant between the groups. . Different methods of performing an osteotomy give similar quality of union. The laser osteotomy, which is not widely used in orthopaedics is an alternative to the current methods. Cite this article: Bone Joint J 2015;97-B:1628–33


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 348 - 353
1 Mar 2013
Metcalfe AJ Stewart C Postans N Dodds AL Holt CA Roberts AP

The aim of this study was to examine the loading of the other joints of the lower limb in patients with unilateral osteoarthritis (OA) of the knee. We recruited 20 patients with no other symptoms or deformity in the lower limbs from a consecutive cohort of patients awaiting knee replacement. Gait analysis and electromyographic recordings were performed to determine moments at both knees and hips, and contraction patterns in the medial and lateral quadriceps and hamstrings bilaterally. The speed of gait was reduced in the group with OA compared with the controls, but there were only minor differences in stance times between the limbs. Patients with OA of the knee had significant increases in adduction moment impulse at both knees and the contralateral hip (adjusted p-values: affected knee: p < 0.01, unaffected knee p = 0.048, contralateral hip p = 0.03), and significantly increased muscular co-contraction bilaterally compared with controls (all comparisons for co-contraction, p < 0.01).

The other major weight-bearing joints are at risk from abnormal biomechanics in patients with unilateral OA of the knee.

Cite this article: Bone Joint J 2013;95-B:348–53.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 642 - 648
1 May 2015
Hunt NC Ghosh KM Blain AP Rushton SP Longstaff LM Deehan DJ

The aim of this study was to compare the maximum laxity conferred by the cruciate-retaining (CR) and posterior-stabilised (PS) Triathlon single-radius total knee arthroplasty (TKA) for anterior drawer, varus–valgus opening and rotation in eight cadaver knees through a defined arc of flexion (0º to 110º). The null hypothesis was that the limits of laxity of CR- and PS-TKAs are not significantly different.

The investigation was undertaken in eight loaded cadaver knees undergoing subjective stress testing using a measurement rig. Firstly the native knee was tested prior to preparation for CR-TKA and subsequently for PS-TKA implantation. Surgical navigation was used to track maximal displacements/rotations at 0º, 30º, 60º, 90º and 110° of flexion. Mixed-effects modelling was used to define the behaviour of the TKAs.

The laxity measured for the CR- and PS-TKAs revealed no statistically significant differences over the studied flexion arc for the two versions of TKA. Compared with the native knee both TKAs exhibited slightly increased anterior drawer and decreased varus-valgus and internal-external roational laxities. We believe further study is required to define the clinical states for which the additional constraint offered by a PS-TKA implant may be beneficial.

Cite this article: Bone Joint J 2015; 97-B:642–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 905 - 908
1 Jul 2006
Hetsroni I Finestone A Milgrom C Sira DB Nyska M Radeva-Petrova D Ayalon M

Excessive foot pronation has been considered to be related to anterior knee pain. We undertook a prospective study to test the hypothesis that exertional anterior knee pain is related to the static and dynamic parameters of foot pronation. Two weeks before beginning basic training lasting for 14 weeks, 473 infantry recruits were enrolled into the study and underwent two-dimensional measurement of their subtalar joint displacement angle during walking on a treadmill.

Of the 405 soldiers who finished the training 61 (15%) developed exertional anterior knee pain. No consistent association was found between the incidence of anterior knee pain and any of the parameters of foot pronation. While a statistically significant association was found between anterior knee pain and pronation velocity (left foot, p = 0.05; right foot, p = 0.007), the relationship was contradictory for the right and left foot. Our study does not support the hypothesis that anterior knee pain is related to excessive foot pronation.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims. As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Methods. Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. Results. Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. Conclusion. This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies. Cite this article: Bone Joint Res 2023;12(1):58–71


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims. Adenosine, lidocaine, and Mg. 2+. (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Methods. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed. Results. Despite comparable knee function, ALM-treated males had reduced systemic inflammation, synovial fluid angiogenic and pro-inflammatory mediators, synovitis, and fat pad fibrotic changes, compared to controls. Within the ACL graft, ALM-treated males had increased expression of tissue repair markers, decreased inflammation, increased collagen organization, and improved graft-bone healing. In contrast to males, females had no evidence of persistent systemic inflammation. Compared to controls, ALM-treated females had improved knee extension, gait biomechanics, and elevated synovial macrophage inflammatory protein-1 alpha (MIP-1α). Within the ACL graft, ALM-treated females had decreased inflammation, increased collagen organization, and improved graft-bone healing. In articular cartilage of ALM-treated animals, matrix metalloproteinase (MMP)-13 expression was blunted in males, while in females repair markers were increased. Conclusion. At 28 days, ALM therapy reduces inflammation, augments tissue repair patterns, and improves joint function in a sex-specific manner. The study supports transition to human safety trials. Cite this article: Bone Joint Res 2024;13(6):279–293


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims. A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. Methods. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions. Results. Anterior translation increased in ACL-deficient UKA cases compared with intact models. In contrast, posterior translation increased in PCL-deficient UKA cases compared with intact models. As the posterior tibial slope increased, anterior translation of ACL-deficient UKA increased significantly in the stance phase, and posterior translation of PCL-deficient UKA increased significantly in the swing phase. Furthermore, as the posterior tibial slope increased, contact stress on the other compartment increased in cruciate ligament-deficient UKAs compared with intact UKAs. Conclusion. Fixed-bearing medial UKA is a viable treatment option for patients with cruciate ligament deficiency, providing a less invasive procedure and allowing patient-specific kinematics to adjust posterior tibial slope. Patient selection is important, and while AP kinematics can be compensated for by posterior tibial slope adjustment, rotational stability is a prerequisite for this approach. ACL- or PCL-deficient UKA that adjusts the posterior tibial slope might be an alternative treatment option for a skilled surgeon. Cite this article: Bone Joint Res 2022;11(7):494–502


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims. One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined. Methods. A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD). Results. The BMD showed no statistically significant difference between both groups. Group A showed for all load levels significantly higher maximum relative motion compared to group S for 20° and 50° flexion. Group S improved the maximum failure load significantly compared to group A without additional cement pockets. Group S showed a significantly increased cement adhesion compared to group A. The cement penetration and cement mantle defect analysis showed no significant differences between both groups. Conclusion. From a biomechanical point of view, the additional cement pockets of the component have improved the fixation performance of the implant. Cite this article: Bone Joint Res 2022;11(4):229–238


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1238 - 1247
1 Oct 2019
Soreide E Denbeigh JM Lewallen EA Thaler R Xu W Berglund L Yao JJ Martinez A Nordsletten L van Wijnen AJ Kakar S

Aims. Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. Materials and Methods. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6). Results. At eight weeks, FiberTape alone or FiberTape-augmented autograft demonstrated increased biomechanical stability compared with autograft regarding ultimate load to failure (p = 0.035), elongation (p = 0.006), and energy absorption (p = 0.022). FiberTape-grafted samples also demonstrated increased bone mineral density in the bone tunnel (p = 0.039). Histological evaluation showed integration of all grafts in the bone tunnels by new bone formation, and limited signs of inflammation overall. A lack of prolonged inflammation in all samples was confirmed by quantification of inflammation biomarkers. However, no regeneration of ligament-like tissue was observed along the suture tape materials. Except for one autograft failure, no adverse events were detected. Conclusion. Our results indicate that FiberTape increases the biomechanical performance of intra-articular ligament reconstructions in a verified rabbit model at eight weeks. Within this period, FiberTape did not adversely affect bone tunnel healing or invoke a prolonged elevation in inflammation. Cite this article: Bone Joint J 2019;101-B:1238–1247


Bone & Joint Research
Vol. 7, Issue 1 | Pages 20 - 27
1 Jan 2018
Kang K Son J Suh D Kwon SK Kwon O Koh Y

Objectives. Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. Methods. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. Results. The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the lateral compartment following the PS UKA exhibited closer values to the healthy knee joint compared with the standard UKA. Conclusion. The PS UKA provided mechanics closer to those of the normal knee joint. The decreased contact stress on the opposite compartment may reduce the overall risk of progressive osteoarthritis. Cite this article: K-T. Kang, J. Son, D-S. Suh, S. K. Kwon, O-R. Kwon, Y-G. Koh. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018;7:20–27. DOI: 10.1302/2046-3758.71.BJR-2017-0115.R2


Bone & Joint Research
Vol. 9, Issue 9 | Pages 593 - 600
1 Sep 2020
Lee J Koh Y Kim PS Kang KW Kwak YH Kang K

Aims. Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Methods. Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition. Results. As compared to intact UKA, there was no significant difference in AP translation in PCL-deficient UKA with a low flexion angle, but AP translation significantly increased in the PCL-deficient UKA with high flexion angles. Additionally, the increased AP translation became decreased as the posterior tibial slope increased. The contact stress in the PF joint and the articular cartilage significantly increased in the PCL-deficient UKA, as compared to the intact UKA. Additionally, the increased posterior tibial slope resulted in a significant decrease in the contact stress on PF joint but significantly increased the contact stresses on the articular cartilage. Conclusion. Our results showed that the posterior stability for low flexion activities in PCL-deficient UKA remained unaffected; however, the posterior stability for high flexion activities was affected. This indicates that a functional PCL is required to ensure normal stability in UKA. Additionally, posterior stability and PF joint may reduce the overall risk of progressive OA by increasing the posterior tibial slope. However, the excessive posterior tibial slope must be avoided. Cite this article: Bone Joint Res 2020;9(9):593–600


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 59 - 65
1 Jun 2020
Kwon Y Arauz P Peng Y Klemt C

Aims. The removal of the cruciate ligaments in total knee arthroplasty (TKA) has been suggested as a potential contributing factor to patient dissatisfaction, due to alteration of the in vivo biomechanics of the knee. Bicruciate retaining (BCR) TKA allows the preservation of the cruciate ligaments, thus offering the potential to reproduce healthy kinematics. The aim of this study was to compare in vivo kinematics between the operated and contralateral knee in patients who have undergone TKA with a contemporary BCR design. Methods. A total of 29 patients who underwent unilateral BCR TKA were evaluated during single-leg deep lunges and sit-to-stand tests using a validated computer tomography and fluoroscopic imaging system. In vivo six-degrees of freedom (6DOF) kinematics were compared between the BCR TKA and the contralateral knee. Results. During single-leg deep lunge, BCR TKAs showed significantly less mean posterior femoral translation (13 mm; standard deviation (SD) 4) during terminal flexion, compared with the contralateral knee (16.6 mm, SD 3.7; p = 0.001). Similarly, BCR TKAs showed significantly less mean femoral rollback (11.6 mm (SD 4.5) vs 14.4 mm (SD 4.6); p < 0.043) during sit-to-stand. BCR TKAs showed significantly reduced internal rotation during many parts of the strenuous flexion activities particularly during high-flexion lunge (4° (SD 5.6°) vs 6.5° (SD 6.1°); p = 0.051) and during sit-to-stand (4.5° (SD 6°) vs 6.9° (SD 6.3°); p = 0.048). Conclusion. The contemporary design of BCR TKA showed asymmetrical flexion-extension and internal-external rotation, suggesting that the kinematics are not entirely reproduced during strenuous activities. Future studies are required to establish the importance of patient factors, component orientation and design, in optimizing kinematics in patients who undergo BCR TKA. Cite this article: Bone Joint J 2020;102-B(6 Supple A):59–65