Advertisement for orthosearch.org.uk
Results 1 - 20 of 33
Results per page:
Bone & Joint Research
Vol. 9, Issue 4 | Pages 162 - 172
1 Apr 2020
Xie S Conlisk N Hamilton D Scott C Burnett R Pankaj P

Aims

Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA.

Methods

This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 6 - 11
1 Jan 2018
Wong RMY Choy MHV Li MCM Leung K K-H. Chow S Cheung W Cheng JCY

Objectives

The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models.

Materials and Methods

A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 385 - 390
1 Jun 2017
Yang Y Lin S Wang B Gu W Li G

Objectives

Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results.

Methods

We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation. Results. A two-fold increaseof newly formed bone volume was observed for Acropora-TECs when compared with Porites-TECs (14 . sd. 1089 mm. 3. versus 782 . sd. 507 mm. 3. ; p = 0.09). Bone union was consistent with autograft (1960 . sd. 518 mm. 3. ). The kinetics of bioresorption and bioresorption rates at four months were different for Acropora-TECs and Porites-TECs (81% . sd. 5% versus 94% . sd. 6%; p = 0.04). In comparing the defects that healed with those that did not, we observed that, when major bioresorption of coral at two months occurs and a scaffold material bioresorption rate superior to 90% at four months is achieved, bone nonunion consistently occurred using coral-based TECs. Discussion. Bone regeneration in critical-size defects could be obtained with full bioresorption of the scaffold using coral-based TECs in a large animal model. The superior performance of Acropora-TECs brings us closer to a clinical application, probably because of more suitable bioresorption kinetics. However, nonunion still occurred in nearly half of the bone defects. Cite this article: A. Decambron, M. Manassero, M. Bensidhoum, B. Lecuelle, D. Logeart-Avramoglou, H. Petite, V. Viateau. A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model. Bone Joint Res 2017;6:208–215. DOI: 10.1302/2046-3758.64.BJR-2016-0236.R1


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 98 - 107
1 Feb 2017
Kazemi D Shams Asenjan K Dehdilani N Parsa H

Objectives

Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model.

Methods

Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (sd) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 403 - 411
1 Sep 2016
Mrosek EH Chung H Fitzsimmons JS O’Driscoll SW Reinholz GG Schagemann JC

Objectives. We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling. Materials and Methods. Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically. Results. At 16 weeks post-operatively, histological scores amongst treatment groups were not statistically different (TMPG: overall 12.7, cartilage 8.6, bone 4.1; TM: overall 14.2, cartilage 9.5, bone 4.9; ED: overall 13.6, cartilage 9.1, bone 4.5). Metal scaffolds were incorporated into the surrounding bone, both in TM and TMPG. The sGAG yield was lower in the neo-cartilage regions compared with the articular cartilage (AC) controls (TMPG 20.8/AC 39.5, TM 25.6/AC 33.3, ED 32.2/AC 40.2 µg sGAG/1 mg respectively), with statistical significance being achieved for the TMPG group (p < 0.05). Hypercellularity of the neo-cartilage was found in TM and ED, as the dsDNA content was significantly higher (p < 0.05) compared with contralateral AC controls (TM 126.7/AC 71.1, ED 99.3/AC 62.8 ng dsDNA/1 mg). The highest type II collagen content was found in neo-cartilage after TM compared with TMPG and ED (TM 60%/TMPG 40%/ED 39%). Inter-treatment differences were not significant. Conclusions. TM is a highly suitable material for the reconstitution of osseous defects. TM enables excellent bony ingrowth and fast integration. However, combined with autologous periosteum, such a biocomposite failed to promote satisfactory neo-cartilage formation. Cite this article: E. H. Mrosek, H-W. Chung, J. S. Fitzsimmons, S. W. O’Driscoll, G. G. Reinholz, J. C. Schagemann. Porous tantalum biocomposites for osteochondral defect repair: A follow-up study in a sheep model. Bone Joint J 2016;5:403–411. DOI: 10.1302/2046-3758.59.BJR-2016-0070.R1


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 845 - 850
1 Jun 2014
Romanò CL Logoluso N Meani E Romanò D De Vecchi E Vassena C Drago L

The treatment of chronic osteomyelitis often includes surgical debridement and filling the resultant void with antibiotic-loaded polymethylmethacrylate cement, bone grafts or bone substitutes. Recently, the use of bioactive glass to treat bone defects in infections has been reported in a limited series of patients. However, no direct comparison between this biomaterial and antibiotic-loaded bone substitute has been performed.

In this retrospective study, we compared the safety and efficacy of surgical debridement and local application of the bioactive glass S53P4 in a series of 27 patients affected by chronic osteomyelitis of the long bones (Group A) with two other series, treated respectively with an antibiotic-loaded hydroxyapatite and calcium sulphate compound (Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded demineralised bone matrix (Group C; n = 22). Systemic antibiotics were also used in all groups.

After comparable periods of follow-up, the control of infection was similar in the three groups. In particular, 25 out of 27 (92.6%) patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out of 22 (86.3%) in Group C showed no infection recurrence at means of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up, respectively, while Group A showed a reduced wound complication rate.

Our results show that patients treated with a bioactive glass without local antibiotics achieved similar eradication of infection and less drainage than those treated with two different antibiotic-loaded calcium-based bone substitutes.

Cite this article: Bone Joint J 2014; 96-B:845–50.


Bone & Joint Research
Vol. 3, Issue 6 | Pages 212 - 216
1 Jun 2014
McConaghie FA Payne AP Kinninmonth AWG

Objectives

Acetabular retractors have been implicated in damage to the femoral and obturator nerves during total hip replacement. The aim of this study was to determine the anatomical relationship between retractor placement and these nerves.

Methods

A posterior approach to the hip was carried out in six fresh cadaveric half pelves. Large Hohmann acetabular retractors were placed anteriorly, over the acetabular lip, and inferiorly, and their relationship to the femoral and obturator nerves was examined.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 193 - 199
1 Sep 2013
Myers KR Sgaglione NA Grande DA

The treatment of osteochondral lesions and osteoarthritis remains an ongoing clinical challenge in orthopaedics. This review examines the current research in the fields of cartilage regeneration, osteochondral defect treatment, and biological joint resurfacing, and reports on the results of clinical and pre-clinical studies. We also report on novel treatment strategies and discuss their potential promise or pitfalls. Current focus involves the use of a scaffold providing mechanical support with the addition of chondrocytes or mesenchymal stem cells (MSCs), or the use of cell homing to differentiate the organism’s own endogenous cell sources into cartilage. This method is usually performed with scaffolds that have been coated with a chemotactic agent or with structures that support the sustained release of growth factors or other chondroinductive agents. We also discuss unique methods and designs for cell homing and scaffold production, and improvements in biological joint resurfacing. There have been a number of exciting new studies and techniques developed that aim to repair or restore osteochondral lesions and to treat larger defects or the entire articular surface. The concept of a biological total joint replacement appears to have much potential.

Cite this article: Bone Joint Res 2013;2:193–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 865 - 874
1 Jul 2012
Mills LA Simpson AHRW

This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature.

We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario.

Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%.

It is vital to know the limitations and success of each model when considering its application.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 421 - 426
1 Mar 2011
Maličev E Barlič A Kregar-Velikonja N Stražar K Drobnič M

The aim of this study was to evaluate the cultivation potential of cartilage taken from the debrided edge of a chronic lesion of the articular surface. A total of 14 patients underwent arthroscopy of the knee for a chronic lesion on the femoral condyles or trochlea. In addition to the routine cartilage biopsy, a second biopsy of cartilage was taken from the edge of the lesion. The cells isolated from both sources underwent parallel cultivation as monolayer and three-dimensional (3D) alginate culture. The cell yield, viability, capacity for proliferation, morphology and the expressions of typical cartilage genes (collagen I, COL1; collagen II, COL2; aggrecan, AGR; and versican, VER) were assessed. The cartilage differentiation indices (COL2/COL1, AGR/VER) were calculated. The control biopsies revealed a higher mean cell yield (1346 cells/mg vs 341 cells/mg), but similar cell proliferation, viability and morphology compared with the cells from the edge of the lesion. The cartilage differentiation indices were superior in control cells: COL2/COL1 (threefold in biopsies (non-significant)); sixfold in monolayer cultures (p = 0.012), and 7.5-fold in hydrogels (non-significant), AGR/VER (sevenfold in biopsies (p = 0.04), threefold (p = 0.003) in primary cultures and 3.5-fold in hydrogels (non-significant)).

Our results suggest that the cultivation of chondrocytes solely from the edges of the lesion cannot be recommended for use in autologous chondrocyte implantation.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1606 - 1613
1 Nov 2010
Oshima S Ishikawa M Mochizuki Y Kobayashi T Yasunaga Y Ochi M

We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived mesenchymal stromal cells labelled with ferumoxide. The contribution of an external magnetic targeting system to attract these cells into the ceramic and their effect on subsequent bone formation were evaluated.

This technique significantly facilitated the infiltration of ferumoxide-labelled cells into ceramic and significantly contributed to the enhancement of bone formation even in the chronic phase. As such, it is potentially of clinical use to treat fractures, bone defects, delayed union and nonunion.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 1033 - 1040
1 Jul 2010
Nishino T Chang F Ishii T Yanai T Mishima H Ochiai N

We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study.

The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 823 - 829
1 Jun 2009
Adachi N Motoyama M Deie M Ishikawa M Arihiro K Ochi M

We evaluated the histological changes before and after fixation in ten knees of ten patients with osteochondritis dissecans who had undergone fixation of the unstable lesions. There were seven males and three females with a mean age of 15 years (11 to 22). The procedure was performed either using bio-absorbable pins only or in combination with an autologous osteochondral plug. A needle biopsy was done at the time of fixation and at the time of a second-look arthroscopy at a mean of 7.8 months (6 to 9) after surgery.

The biopsy specimens at the second-look arthroscopy showed significant improvement in the histological grading score compared with the pre-fixation scores (p < 0.01). In the specimens at the second-look arthroscopy, the extracellular matrix was stained more densely than at the time of fixation, especially in the middle to deep layers of the articular cartilage.

Our findings show that articular cartilage regenerates after fixation of an unstable lesion in osteochondritis dissecans.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 271 - 277
1 Feb 2009
Toms AD Barker RL McClelland D Chua L Spencer-Jones R Kuiper J

The treatment of bony defects of the tibia at the time of revision total knee replacement is controversial. The place of compacted morsellised bone graft is becoming established, particularly in contained defects. It has previously been shown that the initial stability of impaction-grafted trays in the contained defects is equivalent to that of an uncemented primary knee replacement. However, there is little biomechanical evidence on which to base a decision in the treatment of uncontained defects. We undertook a laboratory-based biomechanical study comparing three methods of graft containment in segmental medial tibial defects and compared them with the use of a modular metal augment to bypass the defect.

Using resin models of the proximal tibia with medial defects representing either 46% or 65% of the medial cortical rim, repair of the defect was accomplished using mesh, cement or a novel bag technique, after which impaction bone grafting was used to fill the contained defects and a tibial component was cemented in place. As a control, a cemented tibial component with modular metal augments was used in identical defects. All specimens were submitted to cyclical mechanical loading, during which cyclical and permanent tray displacement were determined.

The results showed satisfactory stability with all the techniques except the bone bag method. Using metal augments gave the highest initial stability, but obviously lacked any potential for bone restoration.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1122 - 1129
1 Aug 2007
Watanabe K Tsuchiya H Sakurakichi K Tomita K

The feasibility of bone transport with bone substitute and the factors which are essential for a successful bone transport are unknown. We studied six groups of 12 Japanese white rabbits. Groups A to D received cylindrical autologous bone segments and groups E and F hydroxyapatite prostheses. The periosteum was preserved in group A so that its segments had a blood supply, cells, proteins and scaffold. Group B had no blood supply. Group C had proteins and scaffold and group D had only scaffold. Group E received hydroxyapatite loaded with recombinant human bone morphogenetic protein-2 and group F had hydroxyapatite alone.

Distraction osteogenesis occurred in groups A to C and E which had osteo-conductive transport segments loaded with osteo-inductive proteins. We conclude that scaffold and proteins are essential for successful bone transport, and that bone substitute can be used to regenerate bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis.

All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage.

Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.