Advertisement for orthosearch.org.uk
Results 1 - 20 of 22
Results per page:
Bone & Joint Open
Vol. 4, Issue 8 | Pages 628 - 635
22 Aug 2023
Hedlundh U Karlsson J Sernert N Haag L Movin T Papadogiannakis N Kartus J

Aims. A revision for periprosthetic joint infection (PJI) in total hip arthroplasty (THA) has a major effect on the patient’s quality of life, including walking capacity. The objective of this case control study was to investigate the histological and ultrastructural changes to the gluteus medius tendon (GMED) in patients revised due to a PJI, and to compare it with revision THAs without infection performed using the same lateral approach. Methods. A group of eight patients revised due to a PJI with a previous lateral approach was compared with a group of 21 revised THAs without infection, performed using the same approach. The primary variables of the study were the fibril diameter, as seen in transmission electron microscopy (TEM), and the total degeneration score (TDS), as seen under the light microscope. An analysis of bacteriology, classification of infection, and antibiotic treatment was also performed. Results. Biopsy samples from the GMED from infected patients revealed a larger fibril diameter than control patients, as seen in the TEM (p < 0.001). Uninfected patients were slightly older and had their revisions performed significantly later than the infected patients. Histologically, samples from infected patients revealed significantly more vascularity (p < 0.001), the presence of glycosaminoglycans (p < 0.001), and a higher TDS (p = 0.003) than the control patients. The majority of patients had staphylococcal infections of various species. Conclusion. More histological degeneration in the GMED was found in patients undergoing THA revision surgery due to PJI than in patients undergoing THA revision surgery due to other reasons. Cite this article: Bone Jt Open 2023;4(8):628–635


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1238 - 1246
1 Jul 2021
Hemmerling KJ Weitzler L Bauer TW Padgett DE Wright TM

Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy. Results. Fretting was present on 88% (53/60) of the retrieved liners, and corrosion was present on 97% (58/60). Fretting was most often found on the lip of the taper at the transition between the lip and the dome regions. Macrophages and particles reflecting an innate inflammatory reaction to corrosion debris were noted in six of the 48 cases for which periprosthetic tissues were examined, and all were associated with retrieved components that had high corrosion scores. Conclusion. Our results show that corrosion occurs at the interface between MDM liners and shells and that it can be associated with reactions in the local tissues, suggesting continued concern that this problem may become clinically important with longer-term use of these implants. Cite this article: Bone Joint J 2021;103-B(7):1238–1246


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 9 - 16
1 Jul 2021
Hadden WJ Ibrahim M Taha M Ure K Liu Y Paish ADM Holdsworth DW Abdelbary H

Aims. The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time. Methods. Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces. Results. All animals tolerated surgery well, with preservation of gait mechanics and weightbearing in control individuals. Postoperative in vivo imaging demonstrated predictable evolution of infection with logarithmic signal decay coinciding with abscess formation. Postmortem mCT qualitative volumetric analysis showed high contact area and both cement-bone and cement-implant interdigitation. FE-SEM revealed biofilm formation on the prosthetic head. Conclusion. This study demonstrates the utility of a new, high-fidelity model of in vivo PJI using cemented hip hemiarthroplasty in rats. Inoculation with bioluminescent bacteria allows for non-invasive, real-time monitoring of infection. Cite this article: Bone Joint J 2021;103-B(7 Supple B):9–16


Bone & Joint Open
Vol. 2, Issue 6 | Pages 443 - 456
28 Jun 2021
Thompson JW Corbett J Bye D Jones A Tissingh EK Nolan J

Aims

The Exeter V40 cemented polished tapered stem system has demonstrated excellent long-term outcomes. This paper presents a systematic review of the existing literature and reports on a large case series comparing implant fractures between the Exeter V40 series; 125 mm and conventional length stem systems.

Methods

A systematic literature search was performed adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. In parallel, we performed a retrospective single centre study of Exeter V40 femoral stem prosthetic fractures between April 2003 and June 2020.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 116 - 121
1 Jul 2020
Heise G Black CM Smith R Morrow BR Mihalko WM

Aims

This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys.

Methods

Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 313 - 322
1 Jul 2019
Law GW Wong YR Yew AK Choh ACT Koh JSB Howe TS

Objectives. The paradoxical migration of the femoral neck element (FNE) superomedially against gravity, with respect to the intramedullary component of the cephalomedullary device, is a poorly understood phenomenon increasingly seen in the management of pertrochanteric hip fractures with the intramedullary nail. The aim of this study was to investigate the role of bidirectional loading on the medial migration phenomenon, based on unique wear patterns seen on scanning electron microscopy of retrieved implants suggestive of FNE toggling. Methods. A total of 18 synthetic femurs (Sawbones, Vashon Island, Washington) with comminuted pertrochanteric fractures were divided into three groups (n = 6 per group). Fracture fixation was performed using the Proximal Femoral Nail Antirotation (PFNA) implant (Synthes, Oberdorf, Switzerland; n = 6). Group 1 was subjected to unidirectional compression loading (600 N), with an elastomer (70A durometer) replacing loose fracture fragments to simulate surrounding soft-tissue tensioning. Group 2 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading), also with the elastomer replacing loose fracture fragments. Group 3 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading) without the elastomer. All constructs were tested at 2 Hz for 5000 cycles or until cut-out occurred. The medial migration distance (MMD) was recorded at the end of the testing cycles. Results. The MMDs for Groups 1, 2, and 3 were 1.02 mm, 6.27 mm, and 5.44 mm respectively, with reliable reproduction of medial migration seen in all groups. Bidirectional loading groups showed significantly higher MMDs compared with the unidirectional loading group (p < 0.01). Conclusion. Our results demonstrate significant contributions of bidirectional cyclic loading to the medial migration phenomenon in cephalomedullary nail fixation of pertrochanteric hip fractures. Cite this article: G. W. Law, Y. R. Wong, A. K-S. Yew, A. C. T. Choh, J. S. B. Koh, T. S. Howe. Medial migration in cephalomedullary nail fixation of pertrochanteric hip fractures: A biomechanical analysis using a novel bidirectional cyclic loading model. Bone Joint Res 2019;8:313–322. DOI: 10.1302/2046-3758.87.BJR-2018-0271.R1


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 62 - 67
1 Jun 2019
Tanzer M Chuang PJ Ngo CG Song L TenHuisen KS

Aims

The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model.

Materials and Methods

A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA).


Bone & Joint Research
Vol. 8, Issue 6 | Pages 246 - 252
1 Jun 2019
Liddle A Webb M Clement N Green S Liddle J German M Holland J

Objectives. Previous studies have evidenced cement-in-cement techniques as reliable in revision arthroplasty. Commonly, the original cement mantle is reshaped, aiding accurate placement of the new stem. Ultrasonic devices selectively remove cement, preserve host bone, and have lower cortical perforation rates than other techniques. As far as the authors are aware, the impact of ultrasonic devices on final cement-in-cement bonds has not been investigated. This study assessed the impact of cement removal using the Orthosonics System for Cemented Arthroplasty Revision (OSCAR; Orthosonics) on final cement-in-cement bonds. Methods. A total of 24 specimens were manufactured by pouring cement (Simplex P Bone Cement; Stryker) into stainless steel moulds, with a central rod polished to Stryker Exeter V40 specifications. After cement curing, the rods were removed and eight specimens were allocated to each of three internal surface preparation groups: 1) burr; 2) OSCAR; and 3) no treatment. Internal holes were recemented, and each specimen was cut into 5 mm discs. Shear testing of discs was completed by a technician blinded to the original grouping, recording ultimate shear strengths. Scanning electron microscopy (SEM) was completed, inspecting surfaces of shear-tested specimens. Results. The mean shear strength for OSCAR-prepared specimens (33.6 MPa) was significantly lower than for the control (46.3 MPa) and burr (45.8 MPa) groups (p < 0.001; one-way analysis of variance (ANOVA) with Tukey’s post hoc analysis). There was no significant difference in shear strengths between control and burr groups (p = 0.57). Scanning electron microscopy of OSCAR specimens revealed evidence of porosity undiscovered in previous studies. Conclusion. Results show that the cement removal technique impacts on final cement-in-cement bonds. This in vitro study demonstrates significantly weaker bonds when using OSCAR prior to recementation into an old cement mantle compared with cement prepared with a burr or no treatment. This infers that care must be taken in surgical decision-making regarding cement removal techniques used during cement-in-cement revision arthroplasty, suggesting that the risks and benefits of ultrasonic cement removal need consideration. Cite this article: A. Liddle, M. Webb, N. Clement, S. Green, J. Liddle, M. German, J. Holland. Ultrasonic cement removal in cement-in-cement revision total hip arthroplasty: What is the effect on the final cement-in-cement bond? Bone Joint Res 2019;8:246–252. DOI: 10.1302/2046-3758.86.BJR-2018-0313.R1


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 882 - 890
1 Jul 2018
Bertrand J Delfosse D Mai V Awiszus F Harnisch K Lohmann CH

Aims

Early evidence has emerged suggesting that ceramic-on-ceramic articulations induce a different tissue reaction to ceramic-on-polyethylene and metal-on-metal bearings. Therefore, the aim of this study was to investigate the tissue reaction and cellular response to ceramic total hip arthroplasty (THA) materials in vitro, as well as the tissue reaction in capsular tissue after revision surgery of ceramic-on-ceramic THAs.

Patients and Methods

We investigated tissue collected at revision surgery from nine ceramic-on-ceramic articulations. we compared our findings with tissue obtained from five metal-on-metal THA revisions, four ceramic-on-polyethylene THAs, and four primary osteoarthritis synovial membranes. The latter were analyzed to assess the amount of tissue fibrosis that might have been present at the time of implantation to enable evaluation, in relation to implantation time, of any subsequent response in the tissues.


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1304 - 1312
1 Oct 2017
Langton DJ Sidaginamale RP Joyce TJ Meek RD Bowsher JG Deehan D Nargol AVF Holland JP

Aims

We sought to determine whether cobalt-chromium alloy (CoCr) femoral stem tapers (trunnions) wear more than titanium (Ti) alloy stem tapers (trunnions) when used in a large diameter (LD) metal-on-metal (MoM) hip arthroplasty system.

Patients and Methods

We performed explant analysis using validated methodology to determine the volumetric material loss at the taper surfaces of explanted LD CoCr MoM hip arthroplasties used with either a Ti alloy (n = 28) or CoCr femoral stem (n = 21). Only 12/14 taper constructs with a rough male taper surface and a nominal included angle close to 5.666° were included. Multiple regression modelling was undertaken using taper angle, taper roughness, bearing diameter (horizontal lever arm) as independent variables. Material loss was mapped using a coordinate measuring machine, profilometry and scanning electron microscopy.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 345 - 350
1 May 2017
Di Laura A Hothi H Henckel J Swiatkowska I Liow MHL Kwon Y Skinner JA Hart AJ

Objectives

The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design.

Methods

This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables.


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 31 - 37
1 Jan 2013
Zywiel MG Brandt J Overgaard CB Cheung AC Turgeon TR Syed KA

Symptomatic cobalt toxicity from a failed total hip replacement is a rare but devastating complication. It has been reported following revision of fractured ceramic components, as well as in patients with failed metal-on-metal articulations. Potential clinical findings include fatigue, weakness, hypothyroidism, cardiomyopathy, polycythaemia, visual and hearing impairment, cognitive dysfunction, and neuropathy. We report a case of an otherwise healthy 46-year-old patient, who developed progressively worsening symptoms of cobalt toxicity beginning approximately six months following synovectomy and revision of a fractured ceramic-on-ceramic total hip replacement to a metal-on-polyethylene bearing. The whole blood cobalt levels peaked at 6521 µg/l. The patient died from cobalt-induced cardiomyopathy. Implant retrieval analysis confirmed a loss of 28.3 g mass of the cobalt–chromium femoral head as a result of severe abrasive wear by ceramic particles embedded in the revision polyethylene liner. Autopsy findings were consistent with heavy metal-induced cardiomyopathy.

We recommend using new ceramics at revision to minimise the risk of wear-related cobalt toxicity following breakage of ceramic components.

Cite this article: Bone Joint J 2013;95-B:31–7.


Bone & Joint Research
Vol. 1, Issue 4 | Pages 56 - 63
1 Apr 2012
Langton DJ Sidaginamale R Lord JK Nargol AVF Joyce TJ

Objectives

An ongoing prospective study to investigate failing metal-on-metal hip prostheses was commenced at our centre in 2008. We report on the results of the analysis of the first consecutive 126 failed mated total hip prostheses from a single manufacturer.

Methods

Analysis was carried out using highly accurate coordinate measuring to calculate volumetric and linear rates of the articular bearing surfaces and also the surfaces of the taper junctions. The relationship between taper wear rates and a number of variables, including bearing diameter and orientation of the acetabular component, was investigated.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1011 - 1016
1 Aug 2011
Langton DJ Jameson SS Joyce TJ Gandhi JN Sidaginamale R Mereddy P Lord J Nargol AVF

There is widespread concern regarding the incidence of adverse soft-tissue reactions after metal-on-metal (MoM) hip replacement. Recent National Joint Registry data have shown clear differences in the rates of failure of different designs of hip resurfacing. Our aim was to update the failure rates related to metal debris for the Articular Surface Replacement (ASR). A total of 505 of these were implanted.

Kaplan-Meier analysis showed a failure rate of 25% at six years for the ASR resurfacing and of 48.8% for the ASR total hip replacement (THR). Of 257 patients with a minimum follow-up of two years, 67 (26.1%) had a serum cobalt concentration which was greater than 7 μg/l. Co-ordinate measuring machine analysis of revised components showed that all patients suffering adverse tissue reactions in the resurfacing group had abnormal wear of the bearing surfaces. Six THR patients had relatively low rates of articular wear, but were found to have considerable damage at the trunion-taper interface. Our results suggest that wear at the modular junction is an important factor in the development of adverse tissue reactions after implantation of a large-diameter MoM THR.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 760 - 768
1 Jun 2011
ten Broeke RHM Alves A Baumann A Arts JJC Geesink RGT

Four uncemented Symax hip stems were extracted at three weeks and nine, 13 and 32 months, respectively, for reasons other than loosening. The reasons for implant removal were infection in two cases, recurrent dislocation in one and acetabular fracture in one. They were analysed to assess the effect and behaviour of an electrochemically deposited, completely resorbable biomimetic BONIT-hydroxyapatite (HA) coating (proximal part) and a DOTIZE surface treatment (distal part) using qualitative histology, quantitative histomorphometry and scanning electron microscopy (SEM). Early and direct bone-implant bonding with signs of active remodelling of bone and the HA coating were demonstrated by histology and SEM. No loose BONIT-HA particles or delamination of the coating were observed, and there was no inflammation or fibrous interposition at the interface. Histomorphometry showed bone-implant contact varying between 26.5% at three weeks and 83.5% at 13 months at the HA-coated implant surface. The bone density in the area of investigation was between 24.6% at three weeks and 41.1% at 32 months. The DOTIZE surface treatment of the distal part of the stem completely prevented tissue and bone apposition in all cases, thereby optimising proximal stress transfer. The overall features of this implant, in terms of geometry and surface texture, suggest a mechanically stable design with a highly active biomimetic coating, resulting in rapid and extensive osseo-integration, exclusively in the metaphyseal part of the stem. Early remodelling of the HA coating does not seem to have a detrimental effect on short-term bone-implant coupling. There were no adverse effects identified from either the BONIT-HA coating or the DOTIZE surface treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1134 - 1141
1 Sep 2009
Isaac GH Brockett C Breckon A van der Jagt D Williams S Hardaker C Fisher J Schepers A

This study reports on ceramic-on-metal (CoM) bearings in total hip replacement. Whole blood metal ion levels were measured. The median increase in chromium and cobalt at 12 months was 0.08 μg/1 and 0.22 μg/1, respectively, in CoM bearings. Comparable values for metal-on-metal (MoM) were 0.48 μg/1 and 0.32 μg/1. The chromium levels were significantly lower in CoM than in MoM bearings (p = 0.02). The cobalt levels were lower, but the difference was not significant. Examination of two explanted ceramic heads revealed areas of thin metal transfer. CoM bearings (one explanted head and acetabular component, one explanted head and new acetabular component, and three new heads and acetabular components) were tested in a hip joint simulator. The explanted head and acetabular component had higher bedding-in. However, after one million cycles all the wear rates were the same and an order of magnitude less than that reported for MoM bearings. There were four outliers in each clinical group, primarily related to component malposition.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 731 - 737
1 Jun 2008
Kim Y Kim J

It has been suggested that the wear of ultra-high molecular weight polyethylene (UHMWPE) in total hip replacement is substantially reduced when the femoral head is ceramic rather than metal. However, studies of alumina and zirconia ceramic femoral heads on the penetration of an UHMWPE liner in vivo have given conflicting results.

The purpose of this study was to examine the surface characteristics of 30 alumina and 24 zirconia ceramic femoral heads and to identify any phase transformation in the zirconia heads. We also studied the penetration rate of alumina and zirconia heads into contemporary UHMWPE liners. The alumina heads had been implanted for a mean of 11.3 years (8.1 to 16.2) and zirconia heads for a mean of 9.8 years (7.5 to 15).

The mean surface roughness values of the explanted alumina heads (Ra 40.12 nm and Rpm 578.34 nm) were similar to those for the explanted zirconia heads (Ra 36.21 nm and Rpm 607.34 nm). The mean value of the monoclinic phase of two control zirconia heads was 1% (0.8% to 1.5%) and 1.2% (0.9% to 1.3%), respectively. The mean value of the monoclinic phase of 24 explanted zirconia heads was 7.3% (1% to 26%).

In the alumina group, the mean linear penetration rate of the UMWPE liner was 0.10 mm/yr (0.09 to 0.12) in hips with low Ra and Rpm values (13.22 nm and 85.91 nm, respectively). The mean linear penetration rate of the UHMWPE liner was 0.13 mm/yr (0.07 to 0.23) in hips with high Ra and Rpm values (198.72 nm and 1329 nm, respectively). This difference was significant (p = 0.041).

In the zirconia head group, the mean linear penetration rate of the UHMWPE liner was 0.09 mm/yr (0.07 to 0.14) in hips with low Ra and Rpm values (12.78 nm and 92.99 nm, respectively). The mean linear penetration rate of the UHMWPE liner was 0.12 mm/yr (0.08 to 0.22) in hips with high Ra and Rpm values (199.21 nm and 1381 nm, respectively). This difference was significant (p = 0.039).

The explanted zirconia heads which had a minimal phase transformation had similar surface roughness and a similar penetration rate of UHMWPE liner as the explanted alumina head.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1158 - 1164
1 Sep 2007
Lusty PJ Watson A Tuke MA Walter WL Walter WK Zicat B

We studied 33 third generation, alumina ceramic-on-ceramic bearings retrieved from cementless total hip replacements after more than six months in situ. Wear volume was measured with a Roundtest machine, and acetabular orientation from the anteroposterior pelvic radiograph. The overall median early wear rate was 0.1 mm3/yr for the femoral heads, and 0.04 mm3/yr for the acetabular liners. We then excluded hips where the components had migrated. In this stable subgroup of 22 bearings, those with an acetabular anteversion of < 15° (seven femoral heads) had a median femoral head wear rate of 1.2 mm3/yr, compared with 0 mm3/yr for those with an anteversion of ≥15° (15 femoral heads, p < 0.001). Even under edge loading, wear volumes with ceramic-on-ceramic bearings are small in comparison to other bearing materials. Low acetabular anteversion is associated with greater wear.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1036 - 1041
1 Aug 2007
Knahr K Pospischill M Köttig P Schneider W Plenk H

Two Durasul highly crosslinked polyethylene liners were exchanged during revision surgery four and five years after implantation, respectively. The retrieved liners were evaluated macroscopically and surface analysis was performed using optical and electron microscopy. A sample of each liner was used to determine the oxidation of the material by Fourier transform infrared spectroscopy. Samples of the capsule were examined histologically. The annual wear rate was found to be 0.010 and 0.015 mm/year, respectively. Surface analysis showed very little loss of material caused by wear. Histological evaluation revealed a continuous neosynovial lining with single multinucleated foreign-body giant cells. Our findings showed no unexpected patterns of wear on the articulating surfaces up to five years after implantation and no obvious failure of material


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 742 - 745
1 Jun 2007
Harvie P Haroon M Henderson N El-Guindi M

We describe three cases of fracture of the titanium JRI-Furlong hydroxyapatite-ceramic (HAC)-coated femoral component. We have examined previous case reports of failure of this stem and conclude that fracture may occur in two places, namely at the neck-shoulder junction and at the conical-distal cylindrical junction. These breakages are the result of fatigue in a metallurgically-proven normal femoral component. All the cases of failure of the femoral component have occurred in patients with a body mass index of more than 25 in whom a small component, either size 9 or 10, had been used.

In patients with a body mass index above normal size 9 components should be avoided and the femoral canal should be reamed sufficiently to accept a large femoral component to ensure that there is adequate metaphyseal fixation.