Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia. In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee.Aims
Methods
The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray. In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level.Aims
Methods
Unicompartmental knee arthroplasty (UKA) and bicompartmental knee arthroplasty (BCA) have been associated with improved functional outcomes compared to total knee arthroplasty (TKA) in suitable patients, although the reason is poorly understood. The aim of this study was to measure how the different arthroplasties affect knee extensor function. Extensor function was measured for 16 cadaveric knees and then retested following the different arthroplasties. Eight knees underwent medial UKA then BCA, then posterior-cruciate retaining TKA, and eight underwent the lateral equivalents then TKA. Extensor efficiency was calculated for ranges of knee flexion associated with common activities of daily living. Data were analyzed with repeated measures analysis of variance (α = 0.05).Aims
Methods
Fixation of osteoporotic proximal humerus fractures remains challenging even with state-of-the-art locking plates. Despite the demonstrated biomechanical benefit of screw tip augmentation with bone cement, the clinical findings have remained unclear, potentially as the optimal augmentation combinations are unknown. The aim of this study was to systematically evaluate the biomechanical benefits of the augmentation options in a humeral locking plate using finite element analysis (FEA). A total of 64 cement augmentation configurations were analyzed using six screws of a locking plate to virtually fix unstable three-part fractures in 24 low-density proximal humerus models under three physiological loading cases (4,608 simulations). The biomechanical benefit of augmentation was evaluated through an established FEA methodology using the average peri-screw bone strain as a validated predictor of cyclic cut-out failure.Aims
Methods
Limb salvage in bone tumour patients replaces the bone with massive segmental prostheses where achieving bone integration at the shoulder of the implant through extracortical bone growth has been shown to prevent loosening. This study investigates the effect of multidrug chemotherapy on extracortical bone growth and early radiological signs of aseptic loosening in patients with massive distal femoral prostheses. A retrospective radiological analysis was performed on adult patients with distal femoral arthroplasties. In all, 16 patients were included in the chemotherapy group with 18 patients in the non-chemotherapy control group. Annual radiographs were analyzed for three years postoperatively. Dimensions of the bony pedicle, osseointegration of the hydroxyapatite (HA) collar surface, bone resorption at the implant shoulder, and radiolucent line (RLL) formation around the cemented component were analyzed.Aims
Methods
There is continued debate as to whether cemented or cementless implants should be utilized in particular cases based upon chronological age. This debate has been rekindled in the UK and other countries by directives mandating certain forms of acetabular and femoral component fixation based exclusively on the chronological age of the patient. This editorial focuses on the literature-based arguments to support the use of cementless total hip arthroplasty (THA), while addressing potential concerns surrounding safety and cost-effectiveness. Cite this article:
The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.Objectives
Methods
Objective. Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study. Methods. Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the
Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal cement thickness around polished stems remains unknown. We investigated the influence of cement thickness on stem subsidence and cement creep. We cemented six collarless polished tapered (CPT) stems (two stems each of small, medium and large sizes) into composite femurs that had been reamed with a large CPT rasp to achieve various thicknesses of the cement mantle. Two or three tantalum balls were implanted in the proximal cement in each femur. A cyclic loading test was then performed for each stem. The migration of the balls was measured three-dimensionally, using a micro-computed tomography (CT) scanner, before and after loading. A digital displacement gauge was positioned at the stem shoulder, and stem subsidence was measured continuously by the gauge. Final stem subsidence was measured at the balls at the end of each stem.Objectives
Methods
High failure rates of metal-on-metal hip arthroplasty implants have highlighted the need for more careful introduction and monitoring of new implants and for the evaluation of the safety of medical devices. The National Joint Registry and other regulatory services are unable to detect failing implants at an early enough stage. We aimed to identify validated surrogate markers of long-term outcome in patients undergoing primary total hip arthroplasty (THA). We conducted a systematic review of studies evaluating surrogate markers for predicting long-term outcome in primary THA. Long-term outcome was defined as revision rate of an implant at ten years according to National Institute of Health and Care Excellence guidelines. We conducted a search of Medline and Embase (OVID) databases. Separate search strategies were devised for the Cochrane database and Google Scholar. Each search was performed to include articles from the date of their inception to June 8, 2015.Objectives
Methods
Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone. Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.Objectives
Methods
Metal-on-metal hip resurfacing (MOMHR) is available as an alternative
option for younger, more active patients. There are failure modes
that are unique to MOMHR, which include loosening of the femoral
head and fractures of the femoral neck. Previous studies have speculated
that changes in the vascularity of the femoral head may contribute
to these failure modes. This study compares the survivorship between
the standard posterior approach (SPA) and modified posterior approach
(MPA) in MOMHR. A retrospective clinical outcomes study was performed examining
351 hips (279 male, 72 female) replaced with Birmingham Hip Resurfacing
(BHR, Smith and Nephew, Memphis, Tennessee) in 313 patients with
a pre-operative diagnosis of osteoarthritis. The mean follow-up
period for the SPA group was 2.8 years (0.1 to 6.1) and for the
MPA, 2.2 years (0.03 to 5.2); this difference in follow-up period
was statistically significant (p <
0.01). Survival analysis was
completed using the Kaplan–Meier method. Objectives
Methods
The objective of this study is to determine an optimal antibiotic-loaded
bone cement (ALBC) for infection prophylaxis in total joint arthroplasty
(TJA). We evaluated the antibacterial effects of polymethylmethacrylate
(PMMA) bone cements loaded with vancomycin, teicoplanin, ceftazidime,
imipenem, piperacillin, gentamicin, and tobramycin against methicillin-sensitive Objectives
Methods