Aims. To describe the incidence of adverse clinical outcomes related to COVID-19 infection following corticosteroid injections (CSI) during the COVID-19 pandemic. To describe the incidence of positive SARS-CoV-2
The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the Oxford Hip Score (OHS), Oxford Knee Score (OKS), Oxford Shoulder Score (OSS), and the Oxford Elbow Score (OES) and its subscales. We developed CAT algorithms for the OHS, OKS, OSS, overall OES, and each of the OES subscales, using responses to the full-length questionnaires and a machine-learning technique called regression tree learning. The algorithms were evaluated through a series of simulation studies, in which they aimed to predict respondents’ full-length questionnaire scores from only a selection of their item responses. In each case, the total number of items used by the CAT algorithm was recorded and CAT scores were compared to full-length questionnaire scores by mean, SD, score distribution plots, Pearson’s correlation coefficient, intraclass correlation (ICC), and the Bland-Altman method. Differences between CAT scores and full-length questionnaire scores were contextualized through comparison to the instruments’ minimal clinically important difference (MCID).Aims
Methods
The timing of when to remove a circular frame is crucial; early removal results in refracture or deformity, while late removal increases the patient morbidity and delay in return to work. This study was designed to assess the effectiveness of a staged reloading protocol. We report the incidence of mechanical failure following both single-stage and two stage reloading protocols and analyze the associated risk factors. We identified consecutive patients from our departmental database. Both trauma and elective cases were included, of all ages, frame types, and pathologies who underwent circular frame treatment. Our protocol is either a single-stage or two-stage process implemented by defunctioning the frame, in order to progressively increase the weightbearing load through the bone, and promote full loading prior to frame removal. Before progression, through the process we monitor patients for any increase in pain and assess radiographs for deformity or refracture.Aims
Methods
In the UK, the NHS generates an estimated 25 megatonnes of carbon dioxide equivalents (4% to 5% of the nation’s total carbon emissions) and produces over 500,000 tonnes of waste annually. There is limited evidence demonstrating the principles of sustainability and its benefits within orthopaedic surgery. The primary aim of this study was to analyze the environmental impact of orthopaedic surgery and the environmentally sustainable initiatives undertaken to address this. The secondary aim of this study was to describe the barriers to making sustainable changes within orthopaedic surgery. A literature search was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines through EMBASE, Medline, and PubMed libraries using two domains of terms: “orthopaedic surgery” and “environmental sustainability”.Aims
Methods
Restarting planned surgery during the COVID-19 pandemic is a clinical and societal priority, but it is unknown whether it can be done safely and include high-risk or complex cases. We developed a Surgical Prioritization and Allocation Guide (SPAG). Here, we validate its effectiveness and safety in COVID-free sites. A multidisciplinary surgical prioritization committee developed the SPAG, incorporating procedural urgency, shared decision-making, patient safety, and biopsychosocial factors; and applied it to 1,142 adult patients awaiting orthopaedic surgery. Patients were stratified into four priority groups and underwent surgery at three COVID-free sites, including one with access to a high dependency unit (HDU) or intensive care unit (ICU) and specialist resources. Safety was assessed by the number of patients requiring inpatient postoperative HDU/ICU admission, contracting COVID-19 within 14 days postoperatively, and mortality within 30 days postoperatively.Aims
Methods
The safe resumption of elective orthopaedic surgery following the peak of the COVID-19 pandemic remains a significant challenge. A number of institutions have developed a COVID-free pathway for elective surgery patients in order to minimize the risk of viral transmission. The aim of this study is to identify the perioperative viral transmission rate in elective orthopaedic patients following the restart of elective surgery. This is a prospective study of 121 patients who underwent elective orthopaedic procedures through a COVID-free pathway. All patients underwent a 14-day period of self-isolation, had a negative COVID-19 test within 72 hours of surgery, and underwent surgery at a COVID-free site. Baseline patient characteristics were recorded including age, American Society of Anaesthesiologists (ASA) grade, body mass index (BMI), procedure, and admission type. Patients were contacted 14 days following discharge to determine if they had had a positive COVID-19 test (COVID-confirmed) or developed symptoms consistent with COVID-19 (COVID-19-presumed).Aims
Methods
Elective operating was halted during the COVID-19 pandemic to increase the capacity to provide care to an unprecedented volume of critically unwell patients. During the pandemic, the orthopaedic department at the Aneurin Bevan University Health Board restructured the trauma service, relocating semi-urgent ambulatory trauma operating to the isolated clean elective centre (St. Woolos’ Hospital) from the main hospital receiving COVID-19 patients (Royal Gwent Hospital). This study presents our experience of providing semi-urgent trauma care in a COVID-19-free surgical unit as a safe way to treat trauma patients during the pandemic and a potential model for restarting an elective orthopaedic service. All patients undergoing surgery during the COVID-19 pandemic at the orthopaedic surgical unit (OSU) in St. Woolos’ Hospital from 23 March 2020 to 24 April 2020 were included. All patients that were operated on had a telephone follow-up two weeks after surgery to assess if they had experienced COVID-19 symptoms or had been tested for COVID-19. The nature of admission, operative details, and patient demographics were obtained from the health board’s electronic record. Staff were assessed for sickness, self-isolation, and COVID-19 status.Aims
Methods
COVID-19 has changed the practice of orthopaedics across the globe. The medical workforce has dealt with this outbreak with varying strategies and adaptations, which are relevant to its field and to the region. As one of the ‘hotspots’ in the UK , the surgical branch of trauma and orthopaedics need strategies to adapt to the ever-changing landscape of COVID-19. Adapting to the crisis locally involved five operational elements: 1) triaging and workflow of orthopaedic patients; 2) operation theatre feasibility and functioning; 3) conservation of human resources and management of workforce in the department; 4) speciality training and progression; and 5) developing an exit strategy to resume elective work. Two hospitals under our trust were redesignated based on the treatment of COVID-19 patients. Registrar/consultant led telehealth reviews were carried out for early postoperative patients. Workflows for the management of outpatient care and inpatient care were created. We looked into the development of a dedicated operating space to perform the emergency orthopaedic surgeries without symptoms of COVID-19. Between March 23 and April 23, 2020, we have surgically treated 133 patients across both our hospitals in our trust. This mainly included hip fractures and fractures/infection affecting the hand.Aims
Methods