Unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) have both been shown to be effective treatments for osteoarthritis (OA) of the knee. Many studies have compared the outcomes of the two treatments, but less so with the use of robotics, or individualized TKA alignment techniques. Functional alignment (FA) is a novel technique for performing a TKA and shares many principles with UKA. Our aim was to compare outcomes from a case-matched series of robotic-assisted UKAs and robotic-assisted TKAs performed using FA. From a prospectively collected database between April 2015 and December 2019, patients who underwent a robotic-assisted medial UKA (RA-UKA) were case-matched with patients who had undergone a FA robotic-assisted TKA (RA-TKA) during the same time period. Patients were matched for preoperative BMI, sex, age, and Forgotten Joint Score (FJS). A total of 101 matched pairs were eligible for final review. Postoperatively the groups were then compared for differences in patient-reported outcome measures (PROMs), range of motion (ROM), ability to ascend and descend stairs, and ability to kneel.Aims
Methods
Functional alignment (FA) in total knee arthroplasty (TKA) aims to achieve balanced gaps by adjusting implant positioning while minimizing changes to constitutional joint line obliquity (JLO). Although FA uses kinematic alignment (KA) as a starting point, the final implant positions can vary significantly between these two approaches. This study used the Coronal Plane Alignment of the Knee (CPAK) classification to compare differences between KA and final FA positions. A retrospective analysis compared pre-resection and post-implantation alignments in 2,116 robotic-assisted FA TKAs. The lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) were measured to determine the arithmetic hip-knee-ankle angle (aHKA = MPTA – LDFA), JLO (JLO = MPTA + LDFA), and CPAK type. The primary outcome was the proportion of knees that varied ≤ 2° for aHKA and ≤ 3° for JLO from their KA to FA positions, and direction and magnitude of those changes per CPAK phenotype. Secondary outcomes included proportion of knees that maintained their CPAK phenotype, and differences between sexes.Aims
Methods
Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM. With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner.Aims
Methods
Patient dissatisfaction following primary total knee arthroplasty (TKA) with manual jig-based instruments has been reported to be as high as 30%. Robotic-assisted total knee arthroplasty (RA-TKA) has been increasingly used in an effort to improve patient outcomes, however there is a paucity of literature examining patient satisfaction after RA-TKA. This study aims to identify the incidence of patients who were not satisfied following RA-TKA and to determine factors associated with higher levels of dissatisfaction. This was a retrospective review of 674 patients who underwent primary TKA between October 2016 and September 2020 with a minimum two-year follow-up. A five-point Likert satisfaction score was used to place patients into two groups: Group A were those who were very dissatisfied, dissatisfied, or neutral (Likert score 1 to 3) and Group B were those who were satisfied or very satisfied (Likert score 4 to 5). Patient demographic data, as well as preoperative and postoperative patient-reported outcome measures, were compared between groups.Aims
Methods
Custom-made partial pelvis replacements (PPRs) are increasingly used in the reconstruction of large acetabular defects and have mainly been designed using a triflange approach, requiring extensive soft-tissue dissection. The monoflange design, where primary intramedullary fixation within the ilium combined with a monoflange for rotational stability, was anticipated to overcome this obstacle. The aim of this study was to evaluate the design with regard to functional outcome, complications, and acetabular reconstruction. Between 2014 and 2023, 79 patients with a mean follow-up of 33 months (SD 22; 9 to 103) were included. Functional outcome was measured using the Harris Hip Score and EuroQol five-dimension questionnaire (EQ-5D). PPR revisions were defined as an endpoint, and subgroups were analyzed to determine risk factors.Aims
Methods
Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference.Aims
Methods
Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate
Robotic-assisted unicompartmental knee arthroplasty (R-UKA) has been proposed as an approach to improve the results of the conventional manual UKA (C-UKA). The aim of this meta-analysis was to analyze the studies comparing R-UKA and C-UKA in terms of clinical outcomes, radiological results, operating time, complications, and revisions. The literature search was conducted on three databases (PubMed, Cochrane, and Web of Science) on 20 February 2024 according to the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Inclusion criteria were comparative studies, written in the English language, with no time limitations, on the comparison of R-UKA and C-UKA. The quality of each article was assessed using the Downs and Black Checklist for Measuring Quality.Aims
Methods
Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan. Cite this article: Abstract
The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI? A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship.Aims
Methods
The aim of this study was to report patient and clinical outcomes following robotic-assisted total knee arthroplasty (RA-TKA) at multiple institutions with a minimum two-year follow-up. This was a multicentre registry study from October 2016 to June 2021 that included 861 primary RA-TKA patients who completed at least one pre- and postoperative patient-reported outcome measure (PROM) questionnaire, including Forgotten Joint Score (FJS), Knee Injury and Osteoarthritis Outcomes Score for Joint Replacement (KOOS JR), and pain out of 100 points. The mean age was 67 years (35 to 86), 452 were male (53%), mean BMI was 31.5 kg/m2 (19 to 58), and 553 (64%) cemented and 308 (36%) cementless implants.Aims
Methods
The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of
With increasing burden of revision hip arthroplasty (THA), one of the major challenges is the management of proximal femoral bone loss associated with previous multiple surgeries. Proximal femoral arthroplasty (PFA) has already been popularized for tumour surgeries. Our aim was to describe the outcome of using PFA in these demanding non-neoplastic cases. A retrospective review of 25 patients who underwent PFA for non-neoplastic indications between January 2009 and December 2015 was undertaken. Their clinical and radiological outcome, complication rates, and survival were recorded. All patients had the Stanmore Implant – Modular Endo-prosthetic Tumour System (METS).Aims
Methods
The Coronal Plane Alignment of the Knee (CPAK) classification is a simple and comprehensive system for predicting pre-arthritic knee alignment. However, when the CPAK classification is applied in the Asian population, which is characterized by more varus and wider distribution in lower limb alignment, modifications in the boundaries of arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) should be considered. The purposes of this study were as follows: first, to propose a modified CPAK classification based on the actual joint line obliquity (aJLO) and wider range of aHKA in the Asian population; second, to test this classification in a cohort of Asians with healthy knees; third, to propose individualized alignment targets for different CPAK types in kinematically aligned (KA) total knee arthroplasty (TKA). The CPAK classification was modified by changing the neutral boundaries of aHKA to 0° ± 3° and using aJLO as a new variable. Radiological analysis of 214 healthy knees in 214 Asian individuals was used to assess the distribution and mean value of alignment angles of each phenotype among different classifications based on the coronal plane. Individualized alignment targets were set according to the mean lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) of different knee types.Aims
Methods
Aims. It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. Methods. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance. Results. In TKAs with a stressed medial-lateral gap difference of ≤1 mm, 147 (89%) had an ICLD of ≤15 lb in extension, and 112 (84%) had an ICLD of ≤ 15 lb in flexion; 157 (95%) had an ICLD ≤ 30 lb in extension, and 126 (94%) had an ICLD ≤ 30 lb in flexion; and 165 (100%) had an ICLD ≤ 60 lb in extension, and 133 (99%) had an ICLD ≤ 60 lb in flexion. With a 0 mm difference between the medial and lateral stressed gaps, 103 (91%) of TKA had an ICLD ≤ 15 lb in extension, decreasing to 155 (88%) when the difference between the medial and lateral stressed extension gaps increased to ± 3 mm. In flexion, 47 (77%) had an ICLD ≤ 15 lb with a medial-lateral gap difference of 0 mm, increasing to 147 (84%) at ± 3 mm. Conclusion. This study found a strong relationship between intercompartmental loads and gap symmetry in extension and flexion measured with prostheses in situ. The results suggest that ICLD and medial-lateral gap difference provide similar assessment of
The use of technology to assess balance and alignment during total knee surgery can provide an overload of numerical data to the surgeon. Meanwhile, this quantification holds the potential to clarify and guide the surgeon through the surgical decision process when selecting the appropriate bone recut or soft tissue adjustment when balancing a total knee. Therefore, this paper evaluates the potential of deploying supervised machine learning (ML) models to select a surgical correction based on patient-specific intra-operative assessments. Based on a clinical series of 479 primary total knees and 1,305 associated surgical decisions, various ML models were developed. These models identified the indicated surgical decision based on available, intra-operative alignment, and tibiofemoral load data.Aims
Methods