Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’).
Cite this article:
Aims. The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs. Methods. The
Aims
Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are common orthopaedic procedures requiring postoperative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI)-based image analysis has the potential to automate this postoperative surveillance. The aim of this study was to prepare a scoping review to investigate how AI is being used in the analysis of radiographs following THA and TKA, and how accurate these tools are.
Methods
The Embase, MEDLINE, and PubMed libraries were systematically searched to identify relevant articles. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews and Arksey and O’Malley framework were followed. Study quality was assessed using a modified Methodological Index for Non-Randomized Studies tool. AI performance was reported using either the area under the curve (AUC) or accuracy.
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered.
Cite this article:
Aims
Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials.
Methods
A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.
In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy, accuracy, and relatability. It also explores some of the limitations of the technology, which act to constrain the widespread adoption of neural networks for diagnostic and prognostic use in spinal care. Finally, it describes the necessary considerations should institutions wish to incorporate ANNs into their practices. In doing so, the aim of this review is to provide a practical approach for spinal surgeons to understand the relevant aspects of neural networks.
Cite this article:
Aims
The aim of this study was to evaluate the ability of a machine-learning algorithm to diagnose prosthetic loosening from preoperative radiographs and to investigate the inputs that might improve its performance.
Methods
A group of 697 patients underwent a first-time revision of a total hip (THA) or total knee arthroplasty (TKA) at our institution between 2012 and 2018. Preoperative anteroposterior (AP) and lateral radiographs, and historical and comorbidity information were collected from their electronic records. Each patient was defined as having loose or fixed components based on the operation notes. We trained a series of convolutional neural network (CNN) models to predict a diagnosis of loosening at the time of surgery from the preoperative radiographs. We then added historical data about the patients to the best performing model to create a final model and tested it on an independent dataset.
Aims
The diagnosis of developmental dysplasia of the hip (DDH) is challenging owing to extensive variation in paediatric pelvic anatomy. Artificial intelligence (AI) may represent an effective diagnostic tool for DDH. Here, we aimed to develop an anteroposterior pelvic radiograph deep learning system for diagnosing DDH in children and analyze the feasibility of its application.
Methods
In total, 10,219 anteroposterior pelvic radiographs were retrospectively collected from April 2014 to December 2018. Clinicians labelled each radiograph using a uniform standard method. Radiographs were grouped according to age and into ‘dislocation’ (dislocation and subluxation) and ‘non-dislocation’ (normal cases and those with dysplasia of the acetabulum) groups based on clinical diagnosis. The deep learning system was trained and optimized using 9,081 radiographs; 1,138 test radiographs were then used to compare the diagnoses made by deep learning system and clinicians. The accuracy of the deep learning system was determined using a receiver operating characteristic curve, and the consistency of acetabular index measurements was evaluated using Bland-Altman plots.