Medial unicompartmental replacement (UKR) has been shown to have superior functional results to total knee replacement (TKR) in appropriately selected patients, and this has been associated with a resurgence of interest in the procedure. This may relate to evidence showing that the kinematic profile of UKR is similar to the normal knee, in comparison to TKR, which has abnormal kinematics. Concerns remain over the survivorship of UKR and work has suggested the anterior cruciate ligament (ACL) may become dysfunctional over time. Cruciate mechanism dysfunction would produce poor kinematics and instability providing a potential mechanism of failure for the UKR.
A cross sectional study was designed in which 24 patients who had undergone successful UKR were recruited and divided into early (2–5 years) and late (>
9 years) groups according to time since surgery. Patients performed flexion/extension against gravity, and a step up. Video fluoroscopy of these activities was used to obtain the Patellar Tendon Angle (PTA), the angle between the long axis of the tibia and the patella tendon, as a function of knee flexion. This is a previously validated method of assessing sagittal plane kinematics of a knee joint. This work suggests the sagittal plane kinematics of a fixed bearing UKR is maintained in the long term. There is no evidence that the cruciate mechanism has failed at ten years. However, increased tibial bearing conformity from ‘dishing’, and adequate muscle control, cannot be ruled out as possible mechanisms for the satisfactory kinematics observed in the long term for this UKA.
Functional outcome after patellofemoral joint replacement (PFA) for osteoarthritis remains inconsistent. It is believed that functional outcome for joint replacement is dependent upon postoperative joint kinematics. Minimal disruption of the native joint, as in PFA, should produce more normal kinematics and improved outcome. No previous studies have examined joint kinematics after isolated PFA.
Twelve patients who had undergone successful PFA at least two years previously were recruited. Patients performed flexion/extension against gravity, and a step up. Video fluoroscopy of these activities was used to obtain the Patellar Tendon Angle (PTA), the angle between the long axis of the tibia and the patella tendon, as a function of knee flexion. This is a previously validated method of assessing sagittal plane kinematics of a knee joint. The kinematic profile of the PFA joints was compared to the profiles for fourteen normal knees. Overall, the kinematic plot obtained for PFA reflected similar trends to that for normal knees; but the PTA was slightly but significantly increased throughout the entire range of flexion (two degrees). This is equivalent to an average displacement of the lower pole of the patella of 1.5mm. Sagittal plane knee kinematics after PFA are much more normal than after TKR and this should give improved functional outcome. The observed increase in PTA through range may result from increased patella thickness or a shallow trochlear groove and may influence patellofemoral contact forces.
Patellofemoral pain is a significant problem for patients with Total Knee Replacements (TKRs). It is hypothesized that pain is related to high patellofemoral forces (PFF). The aim of this study is to validate a model to estimate PFF after TKR, using a combination of non-invasive measurement and theoretical modeling. Experiments were performed on four cadaver knee specimens to compare the PFF and the quadriceps force (QF) estimated by a model, with those measured using force transducers. Each knee was tested in its initial state and after implantation of three Scorpio designs: Cruciate Retaining (CR), Posterior Stabilised (PS), and the Posterior Stabilised Mobile Bearing (PS+). Each knee was extended/flexed under a simulated quadriceps load with 3 kg hung from the distal tibia. Relative movement of the bones was measured using a Vicon 612 motion analysis system. A 6DOF force transducer was used to measure PFFs and a uni-axial transducer was used to measure QFs. A fluoroscope simultaneously captured images of the leg extension activity. Parameters measured from the images were used as inputs to the model. The measured and estimated PFF and QF matched closely between 20o and 80o of knee flexion for the TKRs. At higher flexion angles, the model overestimated the PFF by a maximum of 23N (7.6% max) for the PFF and by 31N for the QF (10.3% max). The estimated and measured Patellar Flexion Angles (PFA) were within 3.5o throughout the flexion range. The model accurately predicts sagittal plane patellar kinematics and kinetics, using only fluoroscopy and externally measured forces as inputs. However, the model has a limitation in assuming that the extending moment is only due to the quadriceps.
Award for the best student biomaterials paper (US$ 2,000); a proper certificate
Abnormal sagittal kinematics after total knee replacement (TKR) can adversely affect functional outcome. Two important determinants of knee kinematics are component geometry and the presence or absence of a posterior-stabilising mechanism (cam-post). We investigated the influence of these variables by comparing the kinematics of a TKR with a polyradial femur with a single radius design, both with and without a cam-post mechanism. We assessed 55 patients, subdivided into four groups, who had undergone a TKR one year earlier by using an established fluoroscopy protocol in order to examine their kinematics
The kinematic profile of single axis design TKR was closer to normal especially near extension. During mid-flexion, abnormal anterior femoral translation was noticed with the polyradial design. No significant difference was noted between CR and CS designs.
Polyethylene wear can be an important cause of knee replacement failure. Six TKRs in young, active patients with excellent Oxford Knee Scores and Knee Society Scores, mean 76 months post knee replacement and 5 control patients, 2 weeks post TKR, were selected. Each patient had weight bearing stereo radiographs of at 0, 15, 30, 45 and 60 degrees of flexion while standing in a calibration grid. These x-rays were analysed using our Radio Stereometric Analysis (RSA) system. The three-dimensional shape of the TKR (manufacturer’s computer aided design model) was matched to the TKR silhouette on the calibrated stereo radiographs for each angle of flexion. The relative positions of the femoral and tibial components in space were then determined and the linear and volumetric penetration was calculated using Matlab software. The accuracy of the system was found to be 0.3mm (CAD model tolerance 0.25mm). The mean linear wear in the control patients was 0.02mm (range −0.19 to +0.23mm). Average linear penetration in the study group was found to be 0.6 mm at 6 years, giving an overall linear wear rate of 0.1mm/year. Average penetration volume at 76 months was 399mm3. The average volumetric wear rate was 63mm3/year. It is possible to measure volumetric wear in vivo using RSA. Volumetric wear rate was found to be 63mm3 per year. Studies on retrieved normally functioning hip replacements have shown volumetric wear rates of 35mm3 per year. However, clinical outcomes of knee replacements are comparable to those of hip replacements, suggesting that the knee has a more effective mechanism for dealing with polyethylene wear particles.