Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

FACTORS INFLUENCING TKR KINEMATICS; SURFACE GEOMETRY VS LIGAMENT RETENTION



Abstract

Introduction: Total knee replacement (TKR) is a common treatment for end stage osteoarthritis of knee. The best knee replacement is one in which the kinematics of the normal knee are reproduced. Amongst several factors affecting kinematics, variation in surface geometry and the retention/ sacrifice of the PCL are considered especially important. It is not known which of these two factors is most influential for establishing optimum joint kinematics after TKR.

Method: Four groups of patients who had undergone TKR at least one year previously were recruited. Two groups of patients had undergone replacement with a single axis design (Scorpio, Stryker Howmedica) in both PCL retaining (Scorpio CR, n=15) and PCL sacrificing (Scorpio CS, n=15) variants. The other two groups had undergone replacement with the traditional polyradial design prosthesis (Sigma, Depuy, Johnson & Johnson), again with both PCL retaining (Sigma CR, n=14) and PCL sacrificing (Sigma CS, n=13) variants. An in-vivo fluoroscopic analysis was carried out on all patients. Patients were asked to perform closed chain step up and open chain extension and flexion against gravity. The kinematic profile of each knee was obtained by measuring patella tendon angle (PTA) at specific angles of knee flexion (KFA) using an established fluoroscopic method. The data was also compared with the kinematic profile of normal knees. American Knee Society, Oxford and Patella Scores were recorded for all patients.

Results: All groups were comparable in terms of age and gender. In addition, no significant difference was found between groups in clinical outcome. PTA results for a step-up exercise are shown in the figure. A one way ANOVA between groups revealed that knee kinematics after total knee replacement is different to that for normal knees. No differences were found between groups when the data was analysed using CR/CS as the independent variable. The only differences between groups were found when surface geometry was used as the independent variable. It was shown that the kinematic profile of the single axis Scorpio design (in both CR & CS ) was closer to normal, especially near extension, than the traditional polyradial design (Sigma CR & CS).

Conclusions: Kinematics after a total knee replacement differ from that for a normal knee. Differences in surface design between knee replacements appear to have greater influence on kinematics than the presence or absence of the PCL.

Correspondence should be addressed to Carlos Widgerowitz, Honorary Secretary BORS, Division of Surgery and Oncology, Section of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Tort Centre, Dundee DD1 9SY, Scotland.