Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes. 10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler force plate. An inverse kinematic model in Visual 3D allowed for no translation of the hip joint centre. 6 degrees of freedom were allowed at other joints. Data were analysed using JASP with a paired samples t-test.Introduction
Method
Many patients with obesity experience knee pain. Excess body weight is a modifiable risk factor for osteoarthritis (OA) and weight loss is encouraged in patients with OA. Bariatric surgery could improve or limit the progression of these conditions through significant weight loss. The Oxford Knee Score (OKS) is a validated tool in the assessment of knee replacement surgery for OA. We present a novel application of the OKS to assess knee pain & function after weight loss surgery. The primary aim of this study was to assess whether there was a significant difference in mean OKS before and 24 months after weight loss surgery. Eighteen female participants were included in this study. They underwent sleeve gastrectomy or Roux-en-Y gastric bypass. Patient demographics, body mass index (BMI) and OKS were collected pre- and 24 months post operatively.Introduction
Method
Stem cells represent an exciting biological therapy for the management of many musculoskeletal tissues that suffer degenerative disease and/or where the reparative process results in non-functional tissue (‘failed healing’). The original hypothesis was that implanted cells would differentiate into the target tissue cell type and synthesise new matrix. However, this has been little evidence that this happens in live animals compared to the laboratory, and more recent theories have focussed on the immunomodulatory effects via the release of paracrine factors that can still improve the outcome, especially since inflammation is now considered one of the central processes that drive poor tendon healing. Because of the initial ‘soft’ regulatory environment for the use of stem cells in domestic mammals, bone and fat-derived stem cells quickly established themselves as a useful treatment for naturally occurring musculoskeletal diseases in the horse more than 20 years ago (Smith, Korda et al. 2003). Since the tendinopathy in the horse has many similarities to human tendinopathy, we propose that the following challenges and, the lessons learnt, in this journey are highly relevant to the development of stem cells therapies for human tendinopathy: Source – while MSCs can be recovered from many tissues, the predominant sources for autologous MSCs have been bone and fat. Other sources, including blood, amnion, synovium, and dental pulp have also been commercialised for allogenic treatments. Preparation – Delivery – transport of cells from the laboratory to the clinic for autologous ex vivo culture techniques; implantation technique (usually by ultrasound-guided injection to minimise damage to the cells (or, more rarely, incorporated into a scaffold). They can also be delivered by regional perfusion via venous or arterial routes. Retention – relatively poor although small numbers of cells do survive for at least 5 months. Immediate loss to the lungs if the cells are administered via vascular routes. Synovially administered cells do not engraft into tendon. Adverse effects – very safe although needle tracts often visible (but do not seen to adversely affect the outcome). Allogenic cells require careful characterisation for MHC Class II antigens to avoid anaphylaxis or reduced efficacy. Appropriate injuries to treat – requires a contained lesion when administered via intra-lesional injection. Intrasynovial tendon lesions are more often associated with surface defects and are therefore less appropriate for treatment. Earlier treatment appears to be more effective than delayed, when implantation by injection is more challenging. Efficacy - beneficial effects shown at both tissue and whole animal (clinical outcome) level in naturally-occurring equine tendinopathy using bone marrow-derived autologous MSCs Recent (licenced) allogenic MSC treatment has shown equivalent efficacy while intra-synovial administration of MSCs is ineffective for open intra-synovial tendon lesions. Regulatory hurdles – these have been lighter for veterinary treatments which has facilitated their development. There has been greater regulation of commercial allogenic MSC preparations which have required EMA marketing authorisation.
Device-associated bacterial infections are a major and costly clinical challenge. This project aimed to develop a smart new biomaterial for implants that helps to protect against infection and inflammation, promote bone growth, and is biodegradable. Gallium (Ga) doped strontium-phosphate was coated on pure Magnesium (Mg) through a chemical conversion process. Mg was distributed in a graduated manner throughout the strontium-phosphate coating GaSrPO4, with a compact structure and a Ga-rich surface. We tested this sample for its biocompatibility, effects on bone remodeling and antibacterial activities including Ga was distributed in a gradient way throughout the entire strontium-phosphate coating with a compact structure and a gallium-rich surface. The GaSrPO4 coating protected the underlying Mg from substantial degradation in minimal essential media at physiological conditions over 9 days. The liberated Ga ions from the coatings upon Mg specimens inhibited the growth of bacterial tested. The Ga dopants showed minimal interferences with the SrPO4 based coating, which boosted osteoblasts and undermined osteoclasts in The results evidenced this new material may be further translated to preclinical trial in large animal model and towards clinical trial.
An increasing elderly population means joint replacement surgery numbers are projected to increase, with associated complications such as periprosthetic joint infections (PJI) also rising. PJI are particularly challenging due to antimicrobial resistant biofilm development on implant surfaces and surrounding tissues, with treatment typically involving invasive surgeries and systemic antibiotic delivery. Consequently, functionalisation of implant surfaces to prevent biofilm formation is a major research focus. This study characterises clinically relevant antimicrobials including gentamicin, clindamycin, daptomycin, vancomycin and caspofungin within a silica-based, biodegradable sol-gel coating for prosthetic devices. Antimicrobial activity of the coatings against clinically relevant microorganisms was assessed via disc diffusion assays, broth microdilution culture methods and the MBEC assay used to determine anti-biofilm activity. Human and bovine cells were cultured in presence of antimicrobial sol-gel to determine cytotoxicity using Alamar blue and antibiotic release was measured by LC-MS. Biodegradability in physiological conditions was assayed by FT-IR, ICP-MS and measuring mass change. Effect of degradation products on osteogenesis were studied by culturing mesenchymal stem cells in the presence of media in which sol-gel samples had been immersed. Antimicrobial-loaded coatings showed strong activity against a wide range of clinically relevant bacterial and fungal pathogens with no loss of activity from antibiotic alone. The sol-gel coating demonstrated controlled release of antimicrobials and initial sol-gel coatings showed no loss of viability on MSCs with gentamicin containing coatings. Current work is underway investigating cytotoxicity of sol-gel compositions against MG-63 cells and primary osteoblasts. This research forms part of an extended study into a promising antimicrobial delivery strategy to prevent PJI. The implant coating has potential to advance PJI infection prevention, reducing future burden upon healthcare costs and patient wellbeing.
Variations in pelvic anatomy are a major risk factor for misplaced percutaneous sacroiliac screws used to treat unstable posterior pelvic ring injuries. A better understanding of pelvic morphology improves preoperative planning and therefore minimises the risk of malpositioned screws, neurological or vascular injuries, failed fixation or malreduction. Hence a classification system which identifies the clinically important anatomical variations of the sacrum would improve communication among pelvic surgeons and inform treatment strategy. 300 Pelvic CT scans from skeletally mature trauma patients that did not have pre-existing posterior pelvic pathology were identified. Axial and coronal transosseous corridor widths at both S1 and S2 were recorded. Additionally, the S1 lateral mass angle were also calculated. Pelvises were classified based upon the sacroiliac joint (SIJ) height using the midpoint of the anterior cortex of L5 as a reference point. Four distinct types could be identified: Type-A – SIJ height is above the midpoint of the anterior cortex of the L5 vertebra. Type-B – SIJ height is between the midpoint and the lowest point of the anterior cortex of the L5 vertebra. Type-C – SIJ height is below the lowest point of the anterior cortex of the L5 vertebra. Type-D – a subgroup for those with a lumbosacral transitional vertebra, in particular a sacralised L5. Differences in transosseous corridor widths and lateral mass angles between classification types were assessed using two-way ANOVAs. Type-B was the most common pelvic type followed by Type-A, Type-C, and Type-D. Significant differences in the axial and coronal corridors was observed for all pelvic types at each level. Lateral mass angles increased from Types-A to C, but were smaller in Type-D. This classification system offers a guide to surgeons navigating variable pelvic anatomy and understanding how it is associated with the differences in transosseous sacral corridors. It can assist surgeons’ preoperative planning of screw position, choice of fixation or the need for technological assistance.
To determine the risk of total knee replacement (TKR) for primary osteoarthritis (OA) associated with overweight/obesity in the Australian population. This population-based study analyzed 191,723 cases of TKR collected by the Australian Orthopaedic Association National Joint Registry and population data from the Australian Bureau of Statistics. The time-trend change in incidence of TKR relating to BMI was assessed between 2015-2018. The influence of obesity on the incidence of TKR in different age and gender groups was determined. The population attributable fraction (PAF) was then calculated to estimate the effect of obesity reduction on TKR incidence. The greatest increase in incidence of TKR was seen in patients from obese class III. The incidence rate ratio for having a TKR for obesity class III was 28.683 at those aged 18-54 years but was 2.029 at those aged >75 years. Females in obesity class III were 1.7 times more likely to undergo TKR compared to similarly classified males. The PAFs of TKR associated with overweight or obesity was 35%, estimating 12,156 cases of TKR attributable to obesity in 2018. The proportion of TKRs could be reduced by 20% if overweight and obese population move down one category. Obesity has resulted in a significant increase in the incidence of TKR in the youngest population in Australia. The impact of obesity is greatest in the young and the female population. Effective strategies to reduce the national obese population could potentially reduce 35% of the TKR, with over 10,000 cases being avoided.
Total knee replacement (TKR) design aims to restore normal kinematics with emphasis on flexion range. The survivorship of a TKR is dependent on the kinematics in six-degrees-of-freedom (6-DoF). Stepping up, such as stair ascent is a kinematically demanding activity after TKR. The debate about design choice has not yet been informed by 6-DoF in vivo kinematics. This prospective randomised controlled trial (RCT) compared kneeling kinematics in three TKR designs. 68 participants were randomised to receive either cruciate retaining (CR-FB), rotating platform (CR-RP) or posterior stabilised (PS-FB) prostheses. Image quality was sufficient for 49 of these patients to be included in the final analysis following a minimum 1-year follow-up. Patients completed a step-up task while being imaged using single-plane fluoroscopy. Femoral and tibial computer-aided design (CAD) models for each of the TKR designs were registered to the fluoroscopic images using bespoke software OrthoVis to generate six-degree-of-freedom kinematics. Differences in kinematics between designs were compared as a function of flexion. There were no differences in terminal extension between the groups. The CR-FB was further posterior and the CR-RP was more externally rotated at terminal extension compared to the other designs. Furthermore, the CR-FB designs was more posteriorly positioned at each flexion angle compared to both other designs. Additionally, the CR-RP design had more external femoral rotation throughout flexion when compared with both fixed bearing designs. However, there were no differences in total rotation for either step-up or down. Visually, it appears there was substantial variability between participants in each group, indicating unique patient-specific movement patterns. While use of a specific implant design does influence some kinematic parameters, the overall patterns are similar. Furthermore, there is high variability indicating patient-specific kinematic patterns. At a group level, none of these designs appear to provide markedly different step-up kinematic patterns. This is important for patient expectations following surgery. Future work should aim to better understand the unique patient variability.
Kinesiophobia, the fear of physical movement and activity related to injury vulnerability, has been linked to sub-optimal outcomes following total knee replacement (TKR). This systematic review has two aims: to define the relationship between kinesiophobia and functional outcomes, pain and range of motion following TKR, and to evaluate published treatments for kinesiophobia following TKR. A primary search was performed in March 2020. English-language studies recruiting adult primary TKR patients, using the Tampa Scale of Kinesiophobia (TSK) were included. Study quality was assessed using the Newcastle Ottawa Scale for cohort or case control studies, and the Cochrane Collaboration Risk of Bias tool for randomised controlled trials.Introduction and Objective
Materials and Methods
Osteoarthritis (OA) is the most common inflammatory and degenerative joint disease. Mesenchymal Stromal Cells (MSCs), with their chondro-protective and immune-regulatory properties, have been considered as a new approach to treat OA. Considering the risk of cell leakage outside the articular space and the poor survival rate after intra-articular (IA) injection, we hypothesized that cell encapsulation in cytoprotective hydrogels could overcome these limitations and provide cells with a suitable 3D microenvironment supporting their biological activity. We previously generated micromolded alginate particles (diameter 150 μm) and demonstrated the long-term viability of microencapsulated MSCs isolated from human adipose tissue (hASCs). Encapsulated cells maintained their in vitro ability to sense and respond to a pro-inflammatory environment (IFN-γ/TNF-α or synovial fluids from OA patients) by secreting PGE2, IDO, HGF and TGF-β. In this study, we evaluated the anti-OA efficacy of these microencapsulated hASCs in a post-traumatic OA model in rabbits. OA was surgically induced by anterior cruciate ligament transection (ACLT)-mediated destabilization of the right knee in rabbits (n=24). Eight weeks after surgery, destabilized joints were injected (IA, 26G needle) with 200 μL of either PBS, blank microparticles, non-encapsulated or microencapsulated cells (5×105 cells). Six weeks after injection, rabbits were euthanized and all destabilized (right) and sham-operated (left contralateral) joints were dissected and analyzed for OA severity. Tibial subchondral bone histomorphometric parameters were measured by quantitative micro-computed tomography (micro-CT). Histological sections of samples were analyzed after Safranin-O staining and quantitatively assessed according to a modified Osteoarthritis Research Society International (OARSI) scoring system. Immunohistochemical detection of NITEGE was performed to assess the extracellular matrix degradation.Introduction and Objective
Materials and Methods
Pre-operative anaemia can present in up to 30% of elective arthroplasty patients. The presence of anaemia increases the risk of requiring blood transfusion post-operatively as well as acts as an independent risk factor for poor outcome such as prosthetic joint infection. Recent international consensus on this topic has recommended a specific care pathway for screening patients with pre-operative anaemia using a simple bedside Heaemacue finger-prick test to detect in a simple and cost-effective manner, and then allow treatment of preoperative anaemia. This pathway was therefore incorporated in our trust. This was a retrospective study done at a single tertiary-referral arthroplasty centre. Our data collection included the Heamacue test results and formal haemoglobin levels if they were performed as well as compliance and costs of each of the tests for patients listed for an elective shoulder, hip and knee arthroplasty between September and December 2018. Medical records and demographics were also collected for these patients for subgroup analysis. Our exclusion criteria comprised patients listed for revision arthroplasty surgery. 87 patients were included in this study. Our compliance rate was 15%. The mean difference between a Haemacue test and a formal FBC result was only 17.6g/L suggesting that it has a reasonably high accuracy. With regards to costs, we found that a Haemacue test costs £2, compared to £7.50 for a full blood count and Haematinics combined. This gave an overall cost saving of £5.50 per patient. Extrapolation of this date locally for 2017 at our hospital, where 1575 primary joint arthroplasties were done, a cost saving of £8,662.5 could have been achieved. Within the UK using data extrapolated from the National Joint Registry a total of £1,102,205.5 (1,221,894 Euros) could have been saved. The use of a single, Haemacue test to screen for pre-operative anaemia in elective arthroplasty patients is more cost effective compared to a formal full count and haematinics tests. However, we found that compliance with the care pathway is variable due to system limitations. This may be addressed through implementing changes to our electronic system in which patients are booked for surgery. We also noted a significant cost reduction if this pathway were to be used Nation-wide. Thus, we encourage other centres to consider the use of the Haemacue test pre-operatively in elective arthroplasty instead of formal full blood counts at the time of decision to treat with arthroplasty; this allows sufficient time for correction of pre-operative anaemia thus improving patient outcomes from arthroplasty.
Virtual Fracture Clinic (VFC) is a consultant-led orthopaedic trauma outpatient triage and management service. The use of VFC has recently become commonplace in the United Kingdom. It allows multiple referral sources to the orthopaedic team, with clinical information and imaging reviewed by a consultant in VFC who formulates an appropriate management plan with the patient contacted; either to attend clinic for consultation or discharged with advice over the phone. The VFC is more efficient than a traditionally delivered outpatient fracture clinic service. We have utilized VFC for 1 year at our hospital, East Kent University Hospital Foundation Trust (EKHUFT), and undertook a closed loop audit to evaluate the service and highlight potential areas of improvement. The Objective of the study was to identify whether the implementation of new re-designed VFC referral guidelines together with teaching set across one of the hospitals in EKHUFT improved the effectiveness and standards of VFC referrals. An initial audit was performed of all referrals made to VFC over a 2 weeks period in December 2018. Changes to the VFC referral pathway were implemented, and teaching sessions performed by the orthopaedic team to all referring units, including minor injury units (MIU) and the emergency department (ED). After implementation, re-audit of VFC referrals was performed in February 2019 over a similar 2 weeks period. Patient demographics, diagnosis and outcomes were collected from the online patient record with images reviewed using PACS software. Following intervention, referral rates dropped by 27.7% (136 vs 188 patients) over the 2 weeks periods. Patient demographics, injury type and severity remained the same between the 2 groups. 51.5% (70/136) did not meet VFC pathway criteria after the intervention and were considered inappropriate, compared to 70% in the original group. 15.4% (21/136) referrals could have been managed in the emergency department using the new guidelines and leaflet discharge. 5.1% (7/136) of the referrals should have been referred to orthopaedic on-call acutely and 22% (30/136) of the referrals had a soft tissue injury or no injury identified. This did not change between the 2 groups despite intervention. Referring MIU and ED units require continued support and teaching over a prolonged time period to hopefully see further improvements. Immediate hot reporting of radiographs may further benefit the service, but staffing and funding issues particularly out of hours, means this remains an aspiration.
Preoperative optimization and protocols for joint replacement care pathways have led to decreased length of stay (LOS), decreased narcotic use and are increasingly important in delivering quality, cost savings and shifting appropriate cases to an outpatient setting. The intraoperative use of vasopressors is independently associated with increased length of stay, risk of adverse postoperative events including death and in total hip arthroplasty there is an increased risk for ICU admission. Our aim is to characterize the patient characteristics associated with vasopressor use specifically in total knee arthroplasty (TKA). We retrospectively reviewed 748 patients undergoing inpatient primary total knee arthroplasty at a single academic institution by two surgeons from 1/1/17 to 12/21/18. Demographics, comorbidities, perioperative factors and intraoperative medication administration were compared with multivariate regression to identify patients who may require intraoperative vasopressors.INTRODUCTION
METHODS
Femoral shaft fractures are potentially devastating injuries. Despite this, clinical studies of the biomechanics of this injury are lacking. We aimed to clinically evaluate bone behaviour under high and low energy trauma in paediatric, adult and older patients. Single-centre retrospective study identifying all diaphyseal femoral fractures between Feb 2015-Feb 2017. Peri-prosthetic and pathological fractures were excluded. Patients were subdivided into groups 1 (paediatric, <16yo), 2 (adult, 17–55yo) and 3 (older, >55yo) to reflect immature, peak bone age and osteoporotic bone respectively. Chi-Squared analysis assessed significance of bone age to degree of comminution and fracture pattern. A p-value <0.05 was significant. A total 4130 radiographs were analysed with 206 femoral shaft fractures identified. Forty-three patients were excluded with 163 remaining. Group 1, 2 and 3 included 38, 37 and 88 patients respectively. Mean age 50.8 (SD 32.8) with male-to-female ratio of 1:1.2. Groups 1 and 3 included majority simple fractures (35/38 and 62/88 respectively). Group 2 included more comminuted injuries (33/37). Bone age to degree of comminution proved significant (p<0.05) with a bimodal distribution of simple fractures noted in groups 1 and 3. Energy to fracture was significant in group 2, where a high energy injury was associated with comminution (p<0.05). This study is the first to demonstrate an association between fracture comminution and age. Simple femoral shaft fractures showed a bimodal age distribution in paediatric and older patients regardless of mechanism energy. High energy mechanism trauma was directly related to fracture comminution at peak bone age.
Intra-synovial tendon injuries affect compressed tendon within a synovial environment (eg Rotator cuff tears of the shoulder) and frequently demonstrate ‘failed healing'. Current therapeutic methods for tendon tears (intra-synovial corticosteroid medication and surgical debridement) offer poor outcomes and new strategies for enhancing repair are needed. We have therefore evaluated two different approaches involving the use of mesenchymal stem cells and scaffolds. Bone marrow- and synovial-derived stem cells were capable of adhering to cut surfaces of tendon
Hip fracture care has evolved, largely due to standardisation of practice, measurement of outcomes and the introduction of the Best Practice Tariff, leading to the sustained improvements documented by the National Hip Fracture Database (NHFD). The treatment of distal femoral fractures in this population has not had the same emphasis. This study defines the epidemiology, current practice and outcomes of distal femoral fractures in four English centres. 105 patients aged 50 years or greater with a distal femoral fracture, presenting to four UK major trauma centres between October 2010 and September 2011 were identified. Data was collected using an adapted NHFD data collection tool via retrospective case note and radiograph review. Local ethics approval was obtained.Background
Methods
All-suture anchors are increasingly used in rotator cuff repair procedures. Potential benefits include decreased bone damage. However, there is limited published evidence for the relative strength of fixation for all-suture anchors compared with traditional anchors. A total of four commercially available all-suture anchors, the ‘Y-Knot’ (ConMed), Q-FIX (Smith & Nephew), ICONIX (Stryker) and JuggerKnot (Zimmer Biomet) and a traditional anchor control TWINFIX Ultra PK Suture Anchor (Smith & Nephew) were tested in cadaveric human humeral head rotator cuff repair models (n = 24). This construct underwent cyclic loading applied by a mechanical testing rig (Zwick/Roell). Ultimate load to failure, gap formation at 50, 100, 150 and 200 cycles, and failure mechanism were recorded. Significance was set at p < 0.05.Objectives
Materials and Methods
A number of advantages of unicondylar arthroplasty (UKA) over total knee arthroplasty in patients presenting osteoarthritis in only a single compartment have been identified in the literature. However, accurate implant positioning and alignment targets, which have been shown to significantly affect outcomes, are routinely missed by conventional techniques. Computer Assisted Orthopaedic Surgery (CAOS) has demonstrated its ability to improve implant accuracy, reducing outliers. Despite this, existing commercial systems have seen extremely limited adoption. Survey indicates the bulk, cost, and complexity of existing systems as inhibitive characteristics. We present a concept system based upon small scale head mounted tracking and augmented reality guidance intended to mitigate these factors. A visible-spectrum stereoscopic system, able to track multiple fiducial markers to 6DoF via photogrammetry and perform semi-active speed constrained resection, was combined with a head mounted display, to provide a video-see-through augmented reality system. The accuracy of this system was investigated by probing 180 points upon a 110×110×50 mm known geometry and performing controlled resection upon a 60×60×15 mm bone phantom guided by an overlaid augmented resection guide that updated in real-time. The system produced an RMS probing accuracy and precision of 0.55±0.04 and 0.10±0.01 mm, respectively. Controlled resection resulted in an absolute resection error of 0.34±0.04 mm with a general trend of over-resection of 0.10±0.07 mm. The system was able to achieve the sub-millimetre accuracy considered necessary to successfully position unicondylar knee implants. Several refinements of the system, such as pose filtering, are expected to increase the functional volume over which this accuracy is obtained. The presented system improves upon several objections to existing commercial CAOS UKA systems, and shows great potential both within surgery itself and its training. Furthermore, it is suggested the system could be readily extended to additional orthopaedic procedures requiring accurate and intuitive guidance.
Transportation media and injection protocol have implications for the viability of MSCs used for intra-lesional treatment of tendon injuries. Every effort should be made to implant cells within 24h of laboratory re-suspension, using a needle bore larger than 21G. Intra-lesional implantation of autologous mesenchymal stem cells (MSCs) has resulted in significant improvements in tendon healing in experimental animal models. Intra-tendinous injection of MSCs into naturally-occurring equine tendon injuries has been shown to be both safe and efficacious1 and these protocols can assist in the translation to the human. Efficient transfer of cells from the laboratory into the tissue requires well validated techniques for transportation and implantation. The aim of this study was to determine the influence of transport media and injection procedure on cellular damage.Summary Statement
Introduction
Using a weight-bearing force control task, age-related changes in muscle action were observed in osteoarthritic subjects, however, greater activation of rectus femoris and medial hamstring muscles in the OA group compared to control indicates greater cocontraction and varied stabilisation strategies. Osteoarthritis (OA) is the most debilitating condition among older adults. OA is thought to be mechanically driven by altering the stabilising integrity of the joint. The main contributor to knee joint stability is that of muscular contraction. In cases where the history of a traumatic knee joint injury is not a causal factor, a change in muscle function, resulting in reduced strength and force control in believed to induce OA development and progression. Since age is also a determining factor of OA, the purpose of this study was to investigate the muscle activation patterns of young healthy adults (YC), older healthy adults (OC), and adults with OA during a standing isometric force control task.Summary Statement
Introduction