header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



8th Combined Meeting Of Orthopaedic Research Societies (CORS)


Summary Statement

Transportation media and injection protocol have implications for the viability of MSCs used for intra-lesional treatment of tendon injuries. Every effort should be made to implant cells within 24h of laboratory re-suspension, using a needle bore larger than 21G.


Intra-lesional implantation of autologous mesenchymal stem cells (MSCs) has resulted in significant improvements in tendon healing in experimental animal models. Intra-tendinous injection of MSCs into naturally-occurring equine tendon injuries has been shown to be both safe and efficacious1 and these protocols can assist in the translation to the human. Efficient transfer of cells from the laboratory into the tissue requires well validated techniques for transportation and implantation. The aim of this study was to determine the influence of transport media and injection procedure on cellular damage.


Bone marrow derived MSCs (n=3 horses) were prepared and expanded as described1. Cells were suspended in 0.5mL of experimental media at 2.5×106 cells/mL and stored at 4–8°C for 24, 48 and 72h. Experimental media were: bone marrow aspirate (BMA); cell culture media (DMEM); equine serum; equine plasma; isotonic saline; hyaluronic acid (HA); platelet-rich plasma (PRP) and frozen (in 90% serum, 10% DMSO). In addition, cells suspended in DMEM were injected through a 19G, 21G or 23G needle and cell viability, proliferation and apoptosis were analysed using trypan blue, alamarBlue® and Annexin-V assays respectively.


There was no significant difference in overall viability at 24h storage in any media, however cell death was most rapid when cells were suspended in BMA, PRP and serum. Viability was greatest at all time points when cells were frozen. Cell proliferation was similar following storage for 24 and 72h in all media, except for 24h in serum, wherein proliferation was enhanced. There was no significant decrease in viability immediately following injection but 21G and 23G needles resulted in a marked increase in apoptotic cells compared to 19G and non-injected controls after 24h when re-seeded for culture. All needle gauges resulted in a marked decrease in cell proliferation immediately post-injection with recovery by 2h post-injection.


Although there is, as yet, no guidance on the storage of MSCs, it has been suggested that in vitro storage of hematopoietic stem or progenitor cells should not exceed 2h2. This suggestion is impractical both for current equine therapeutic use and when considering future, commercial applications of MSC therapy in humans, because of the necessity to transport the cells from a remote licensed facility to the clinic. Our data suggest an upper limit of 24h for transportation, whereas for transportation of greater duration than 24h, cells should ideally be frozen, to maximise viability.

An increased number of dead cells potentially has two adverse consequences; first, a reduced efficacy and second, the presence of dead cell debris may induce inflammation. While the first can be compensated for by higher cell numbers, this compounds the problems of the second. This study reinforces the importance of limiting the delay between preparation of cells for shipment from the laboratory and implantation in the clinic and suggests that an injection procedure while not causing immediate cell death can cause significant delayed cell death if small bore needles are used.