Re-revision due to instability and dislocation can occur in up to 1 in 4 cases following revision total hip arthroplasty (THA). Optimal placement of components during revision surgery is thus critical in avoiding re-revision. Computer-assisted navigation has been shown to improve the accuracy and precision of component placement in primary THA; however, its role in revision surgery is less well documented. The purpose of our study was to evaluate the effect of computer-assisted navigation on component placement in revision total hip arthroplasty, as compared with conventional surgery. To examine the effect of navigation on acetabular component placement in revision THA, we retrospectively reviewed data from a multi-centre cohort of 128 patients having undergone revision THA between March 2017 and January 2019. An imageless computer navigation device (Intellijoint HIP®, Intellijoint Surgical, Kitchener, ON, Canada) was utilized in 69 surgeries and conventional methods were used in 59 surgeries. Acetabular component placement (anteversion, inclination) and the proportion of acetabular components placed in a functional safe zone (40° inclination/20° anteversion) were compared between navigation assisted and conventional THA groups.Introduction
Methods
Sagittal pelvic tilt (SPT) can change with spinal pathologies and fusion. Change in the SPT can result in impingement and hip instability. Our aim was to determine the magnitude of the SPT change for hip instability to test the hypothesis that the magnitude of SPT change for hip instability is less than 10° and it is not similar for different hip motions. Hip implant motions were simulated in standing, sitting, sit-to-stand, bending forward, squatting and pivoting in Matlab software. When prosthetic head and liner are parallel, femoral head dome (FHD) faces the center of the liner. FHD moves toward the edge of the liner with hip motions. The maximum distance between the FHD and the center in each motion was calculated and analyzed. To make the results more reliable and to consider the possibility of bony impingement, when the FHD approached 90% of the distance between the liner-center and liner-edge, we considered the hip “in danger for dislocation”. The implant orientations and SPT were modified by 1-degree increments and we used linear regression with receiver operating characteristic (ROC) curve and area under the curve (AUC) to determine the magnitude of SPT change that could cause instability.Introduction
Methods
There is debate regarding whether the use of computer-assisted technology, such as navigation and robotics, has any benefit on clinical or patient reported outcomes following total knee arthroplasty (TKA). This study aims to report on the association between intraoperative use of technology and outcomes in patients who underwent primary TKA. We retrospectively reviewed 7,096 patients who underwent primary TKA from 2016–2020. Patients were stratified depending on the technology utilized intraoperatively: navigation, robotics, or no technology. Patient demographics, clinical data, Forgotten Joint Score-12 (FJS), and Knee injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS, JR) were collected at various time points up to 1-year follow-up. Demographic differences were assessed with chi-square and ANOVA tests. Clinical data and mean FJS and KOOS, JR scores were compared using univariate ANCOVA, controlling for demographic differences.Introduction
Methods
The use of technology, such as navigation and robotic systems, may improve the accuracy of component positioning in total hip arthroplasty (THA) but its impact on patient reported outcomes measures (PROMs) remains unclear. This study aims to identify the association between intraoperative use of technology and patient reported outcomes measures (PROMs) in patients who underwent primary total hip arthroplasty (THA). We retrospectively reviewed patients who underwent primary THA between 2016 and 2020 and answered a post-operative PROM questionnaire. Patients were separated into three groups depending on the technology utilized intraoperatively: navigation, robotics, or no technology (i.e. manual THA. The Forgotten Joint Score (FJS-12) and Hip Disability and Osteoarthritis Outcome Score, Joint Replacement (HOOS, JR) were collected at various time points (FJS: 3m, 1y, and 2y; HOOS, JR: pre-operatively, 3m, and 1y). Demographic differences were assessed with chi-square and ANOVA. Mean scores between all groups were compared using univariate ANCOVA, controlling for observed demographic differences.Introduction
Methods
Proponents of the THA anterior approach have advocated for the use of dedicated surgical tables similar to those used in lower extremity fracture care that allow for traction, rotation, and angulation of the limb during surgery. Some tables require a specially-trained assistant to manipulate the table, whereas some may be manipulated by the surgeon. The purpose of this study is to compare the clinical outcomes in patients who underwent THA through an anterior approach on an assistant-controlled (AC) versus a surgeon-controlled (SC) table. This is a retrospective study of 343 consecutive THA patients from January 2017 – October 2017. Surgical and clinical data included surgical time, LOS, presence of pain (groin, hip, or thigh pain) at latest follow-up, and revision for any reason. Immediate postoperative radiographs were compared with latest follow-up radiographs to assess for LLD, stem alignment, and stem subsidence.INTRODUCTION
METHODS
The JOURNEY™ II Cruciate-Retaining Total Knee System (JIICR) and the JOURNEY™ II Bi-Cruciate Stabilized Total Knee System (JIIBCS) (both, Smith & Nephew, Memphis, TN, USA) are used for the treatment of end-stage degenerative knee arthritis. Belonging to the JOURNEY family of knee implants, the relatively new devices are designed to provide guided motion. Studies suggest that long-term outcomes of robotic-assisted navigation in total knee arthroplasty (TKA) are superior to the classical approach. This is the first report describing early postoperative outcomes of the NAVIO® robotic-assisted surgical navigation using the JOURNEY™ II family of knee implants. In this ongoing study, six investigational sites in the US prospectively enrolled 122 patients (122 TKAs, 64 JIIBCS and 58 JIICR). Patients underwent TKA using the NAVIO system (Figure 1), a next-generation semi-autonomous tool that uses handheld miniaturized robotic-assisted instrumentation that the surgeon manipulates in 6 degrees of freedom, but restricts cutting to within the confines of the pre-designated resection area of the patient's bone. The primary outcome was postoperative mechanical alignment on long leg X-ray at one month postoperative compared to operative target alignment. Alignment within ±3 degrees of the target alignment was considered a success.Background
Materials & Methods
Computer-assisted hip navigation offers the potential for more accurate placement of hip components, which is important in avoiding dislocation, impingement, and edge-loading. The purpose of this study was to determine if the use of computer-assisted hip navigation reduced the rate of dislocation in patients undergoing revision THA. We retrospectively reviewed 72 patients who underwent computer-navigated revision THA [Fig. 1] between January 2015 and December 2016. Demographic variables, indication for revision, type of procedure, and postoperative complications were collected for all patients. Clinical follow-up was performed at 3 months, 1 year, and 2 years. Dislocations were defined as any episode that required closed or open reduction or a revision arthroplasty. Data are presented as percentages and was analyzed using appropriate comparative statistical tests (z-tests and independent samples t- tests).Introduction
Methods and Materials
A comprehensive understanding of pelvic orientation prior to total hip arthroplasty is necessary to allow proper cup positioning and mitigate the risks of complications associated with component malpositioning. Measurements using anteroposterior (AP) radiographs have been described as effective means of accurately predicting pelvic orientation. The purpose of our study was to describe the inter- and intra-observer reliability and predictive accuracy of predicting pelvic tilt using AP radiographs. Five fellowship-trained orthopaedic surgeons independently analyzed pelvic tilt, within 10 degrees, for 50 different AP pelvis radiographs. All surgeons were blinded to patient information, diagnosis, and correct measurements prior to analysis. Responses were then compared to correct measurements using sitting-standing AP and lateral stereoradiographs.Introduction
Methods
Revision Total Knee Arthroplasty (TKA) is becoming increasingly prevalent as the number of TKA procedures grow in a younger, higher-demand population. Factors associated with patients requiring multiple revision TKAs are not yet well understood. The purpose of this study is to investigate the epidemiology of re-revision TKA, and identify risk factors that are associated with failure of re-revision TKA. A retrospective analysis was performed on 358 patients who underwent revision TKA at a single institution between 1/2012 and 12/2013. Patients who underwent revision knee arthroplasty two or more times were included. Patients were excluded if their indication for the first revision was periprosthetic joint infection (PJI). Patient demographics, surgical indications, revision details, and available follow-up information were collected. Re-revision failure was defined as the need for any additional operative intervention. A logistic regression analysis was performed to assess for significant predictors of re-revision failure.Introduction
Methods
Total knee arthroplasty (TKA) surgical techniques attempt to achieve equal flexion and extension gaps to produce a well-balanced knee, but unexplainable unhappy patients persist. Mid-flexion instability is one proposed cause of unhappy patients. There are multiple techniques to achieve equal flexion and extension gaps, but their effects in mid-flexion are largely unknown. The purpose of the study is to determine the effects that changing femur implant size and/or adjusting the femur and tibia proximal -distal and femur anterior-posterior implant positions have on cruciate retaining (CR) TKA mid-flexion ligament balance when equal flexion and extension gaps are maintained.Background
Purpose of study
Acetabular cup malpositioning has been implicated in instability and wear-related complications after total hip arthroplasty. Although computer navigation and robotic assistance have been shown to improve the precision of implant placement, most surgeons use mechanical and visual guides to place acetabular components. Authors have shown that, when using a bean bag positioner, mechanical guides are misleading as they are unable to account for the variability in pelvic orientation during positioning and surgery. However, more rigid patient positioning devices may allow for more accurate free hand cup placement. To our knowledge, no study has assessed the ability of rigid devices to afford surgeons with ideal pelvic positioning throughout surgery. The purpose of this study is to utilize robotic-arm assisted computer navigation to assess the reliability of pelvic position in total hip arthroplasty performed on patients positioned with rigid positioning devices. 100 hips (94 patients) prospectively underwent total hip Makoplasty in the lateral decubitus position from the posterior approach; 77 stabilized by universal lateral positioner, and 23 by peg board. After dislocation but prior to reaming, one fellowship trained arthroplasty surgeon manually placed the robotic arm parallel to both the longitudinal axis of the patient and the horizontal surface of the operating table, which, if the pelvis were oriented perfectly, would represent 0 degrees of anteversion and 0 degrees of inclination. The CT-templated computer software then generated true values of this perceived zero degrees of anteversion and inclination based on the position of the robot arm registered to a preoperative pelvic CT. Therefore, variations in pelvic positioning are represented by these robotic navigation generated values. To assure the accuracy of robotic measurements, cup anteversion and inclination at times of impaction were recorded and compared to those calculated via the trigonometric ellipse method of Lewinnek on standardized 3 months postoperative X-rays.INTRODUCTION
METHODS
The epidemiology of re-revision total hip arthroplasty (THA) is not well understood. The purpose of this study is to investigate the epidemiology of re-revision THA, and identify risk factors that are associated with failure of re-revision THA. A retrospective analysis was performed on 288 patients who underwent revision THA at a single institution between 1/2012 and 12/2013. Patients who underwent revision hip arthroplasty two or more times were included. Patients were excluded if their indication for their first revision was due to periprosthetic joint infection (PJI). Patient demographics, surgical indications, revision details, and available follow-up information were collected through the electronic medical record. Re-revision failure was defined as the need for any additional return to the operating room, regardless of indication. A logistic regression analysis was performed to assess for significant predictors of re-revision failure.Introduction
Methods
Total knee arthroplasty (TKA) surgical techniques attempt to achieve equal flexion and extension gaps to produce a well-balanced knee. Anterior knee pain, which is not addressed by flexion-extension balancing, is one of the more common complaints for TKA patients. The variation in patellofemoral balance resulting from the techniques to achieve equal flexion and extension gaps has not been widely studied. The purpose of the study is to determine the effects on cruciate retaining (CR) TKA patellofemoral balance when equal flexion and extension gaps are maintained while changing femur implant size and/or adjusting the femur and tibia implant proximal -distal and femur anterior-posterior positions.Background
Purpose of study
Spinal deformity has a known deleterious effect upon the outcomes of total hip arthroplasty and acetabular component positioning. This study sought to evaluate the relationship between severity of spinal deformity parameters and acetabular cup position, rate of dislocation, and rate of revision among patients with total hip arthroplasties and concomitant spinal deformity. A prospectively collected database of patients with spinal deformity was reviewed and patients with total hip arthroplasty were identified. The full body standing stereoradiographic images (EOS) were reviewed for each patient. From these images, spinal deformity parameters and acetabular cup anteversion and inclination were measured. A chart review was performed on all patients to determine dislocation and revision arthroplasty events. Statistical analysis was performed to determine correlation of deformity with acetabular cup position. Subgroup analysis was performed for patients with spinal fusion, dislocation events, and revision THA.Background
Methods
Achieving proper ligament tension in knee flexion within cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. The distal femoral joint line (DFJL) is routinely used as a variable to assist in achieving proper flexion-extension gap balancing. No prior study has observed the possible effects of properly restoring the DFJL may have on ligament tension in flexion. The purpose of this computational analysis was to determine what effect the DFJL may have on ligament strains and tibiofemoral kinematics of CR knee designs in flexion. A computational analysis was performed utilizing a musculoskeletal modeling system with ligaments modeled as non-linear elastic. Tibiofemoral kinematics, contact points estimated from the femoral condyle low points, and ligament strain, change in length relative to the unloaded length, were measured at 90° knee flexion during a deep knee bend activity. Two different knee implants, a High Flexion CR (HFCR) and a Guided Motion CR (GMCR) design were used. Simulations were completed for changes in superior-inferior (SI) positioning of the femoral implant relative to the femur bone, in 2mm increments to simulate over and under resection of the DFJL.Introduction
Methods
Achieving proper ligament tension in knee flexion within posterior cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. Ligament balance has been achieved through specific surgical technique steps. No prior study evaluated the possible effects of varying levels of posterior cruciate ligament (PCL) release on femorotibial contact location and PCL ligament strain. The purpose of this computational analysis was to determine what effect-varying levels of PCL release may have on the tibiofemoral kinematics and PCL strain. A computational analysis was performed utilizing a musculoskeletal modeling system with ligaments modeled as non-linear elastic structures and ligament insertions. A single CR knee system with two different tibial insert designs was tested, a Guided Motion (GM) and an ultra-congruent, Deep Dished (DD) design. Varying levels of PCL release were simulated by setting the stiffness of both bundles of the PCL to a percentage, ranging from 0–100% in 25% increments. Tibiofemoral kinematics was evaluated by measuring the contact points estimated from the femoral condyle low points, and ligament strain of the anterior-lateral (AL) and posterior-medial (PM) bundles. The maximum PCL strain was determined for each bundle to evaluate the risk of PCL rupture based on the PCL failure strain.Introduction
Methods
Total knee arthroplasty (TKA) is a very successful procedure with good clinical outcomes. However, the effects of obesity on TKA outcomes remain controversial and inconclusive. The objective of this study was to quantify the biomechanical effects of simulated obesity on Cruciate Retaining (CR) and Posterior Stabilized (PS) TKA in human cadaveric knees. We hypothesized that biomechanical characteristics of CR TKA will be less dependent on simulated obesity compared to PS TKA. Eight cadaveric knees (4 male, 4 female) average age 68.4 years (range, 40–86 years) underwent TKA and were tested using a custom knee testing system. Specifically, Cruciate Retaining (CR) and Posterior Stabilized (PS) Lospa Knee System (Corentec Inc.) were implanted and tested sequentially using internal control experimental design. The muscle loading was determined based on the physiological cross-sectional area ratio of the quadriceps and hamstring muscles. The ratios were then applied to CDC data representing the average male height and used to simulate a BMI of 25, 30, and 35 at knee flexion angles (KFA) of 15, 30, 45, 60, 75, and 90 degrees. Patellofemoral and tibiofemoral joint contact areas and pressures were measured using the K-scan sensor system (Tekscan Inc, South Boston, MA). Contact area, force, pressure and peak contact pressure were obtained and analyzed for each specimen. Knee kinematics were quantified using a Microscribe 3DLX digitizer (Revware Inc, Raleigh, North Carolina). Repeated measure analysis of variance with a Tukey post hoc test was used to compare loading conditions. Comparisons between the CR and PS TKA groups were made with a paired INTRODUCTION
METHODS