Senile kyphosis arises from anterior ‘wedge’ deformity of thoracolumbar vertebrae, often in the absence of trauma. It is difficult to reproduce these deformities in cadaveric spines, because a vertebral endplate usually fails first. We hypothesise that endplate fracture concentrates sufficient loading on to the anterior cortex that a wedge deformity develops subsequently under physiological repetitive loading. Thirty-four cadaveric thoracolumbar “motion segments,” aged 70–97 yrs, were overloaded in combined bending and compression. Physiologically-reasonable cyclic loading was then applied, at progressively higher loads, for up to 2 hrs. Before and after fracture, and again after cyclic loading the Introduction
Methods
Osteoporotic vertebral fractures can cause severe vertebral wedging and kyphotic deformity. This study tested the hypothesis that kyphoplasty restores vertebral height, shape and mechanical function to a greater extent than vertebroplasty following severe wedge fractures. Pairs of thoracolumbar “motion segments” from seventeen cadavers (70–97 yrs) were compressed to failure in moderate flexion and then cyclically loaded to create severe wedge deformity. One of each pair underwent vertebroplasty and the other kyphoplasty. Specimens were then creep loaded at 1.0kN for 1 hour. At each stage of the experiment the following parameters were measured: vertebral height and wedge angle from radiographs, motion segment compressive stiffness, and stress distributions within the intervertebral discs. The latter indicated intra-discal pressure (IDP) and neural arch load-bearing (FN).Introduction
Methods
Senile kyphosis arises from anterior ‘wedge’ deformity of thoracolumbar vertebrae, often in the absence of trauma. It is difficult to reproduce these deformities in cadaveric spines, because a vertebral endplate usually fails first. We hypothesise that endplate fracture concentrates sufficient loading on to the anterior cortex that a wedge deformity develops subsequently under physiological repetitive loading. Thirty-four cadaveric thoracolumbar “motion segments,” aged 70–97 yrs, were overloaded in combined bending and compression. Physiologically-reasonable cyclic loading was then applied, at progressively higher loads, for up to 2 hrs. Before and after fracture, and again after cyclic loading the distribution of compressive loading on the vertebral body was assessed from recordings of compressive stress along the sagittal mid-plane of the adjacent intervertebral disc. Vertebral deformity was assessed from radiographs at the beginning and end of testing.Introduction
Methods
The feature of disc degeneration most closely associated with pain is a large fissure in the annulus fibrosus. Nerves and blood vessels are excluded from normal discs by high matrix stresses and by high proteoglycan (PG) content. However, they appear to grow into annulus fissures in surgically-removed degenerated discs. We hypothesize that anulus fissures provide a micro-environment that is mechanically and chemically conducive to the in-growth of nerves and blood vessels. 18 three-vertebra thoraco-lumbar spine specimens (T10/12 to L2/4) were obtained from 9 cadavers aged 68-92 yrs. All 36 discs were injected with Toluidine Blue so that leaking dye would indicate major fissures in the annulus. Specimens were then compressed at 1000 N while positioned in simulated flexed and extended postures, and the distribution of compressive stress within each disc was characterised by pulling a pressure transducer through it in various planes. After testing, discs were dissected and the morphology of fissures noted. Reductions in stress in the vicinity of fissures were compared with average pressure in the disc nucleus. Distributions of PGs and collagen were investigated in 16 surgically-removed discs by staining with Safranin O. Digital images were analysed in Matlab to obtain profiles of stain density in the vicinity of fissures.Introduction
Methods
In the annulus fibrosus of degenerated intervertebral discs, disruption to inter-lamellar cross-ties appears to lead to delamination, and the development of anulus fissures. We hypothesise that such internal disruption is likely to be driven by high gradients of compressive stress (i.e. large differences in stress from the nucleus to the mid anulus). Eighty-nine thoracolumbar motion segements, from T7/8 to L4/5, were dissected from 38 cadavers aged 42-96 yrs. Each was subjected to 1 kN compressive loading, while intradiscal compressive stresses were measured by pulling a pressure transducer along the disc's mid-sagittal diameter. Measurements were repeated in flexed and extended postures. Stress gradients were measured, in the anterior and posterior anulus of each disc, as the average rate of increase in stress (MPa/mm) between the nucleus and the region of maximum compressive stress in the anulus. Average nucleus pressure (IDP) was also recorded.Background
Methods
Treatment of syndesmotic injuries is a subject of ongoing controversy. Locking plates have been shown to provide both angular and axial stability and therefore could potentially control both shear forces and resist widening of the syndesmosis. The aim of this study is to determine whether a two-hole locking plate has biomechanical advantages over conventional screw stabilisation of the syndesmosis in this pattern of injury. Six pairs of fresh-frozen human cadaver lower legs were prepared to simulate an unstable Maisonneuve fracture. The limbs were then mounted on a servo-hydraulic testing rig and axially loaded to a peak load of 800N for 12000 cycles. Each limb was compared with its pair; one receiving stabilisation of the syndesmosis with two 4.5mm quadricortical cortical screws, the other a two-hole locking plate with 3.2mm locking screws (Smith and Nephew). Each limb was then externally rotated until failure occurred. Failure was defined as fracture of bone or metalwork, syndesmotic widening or axial migration >2mm. Both constructs effectively stabilised the syndesmosis during the cyclical loading within 1mm of movement. However the locking plate group demonstrated superior resistance to torque compared to quadricortical screw fixation (40.6Nm vs 21.2Nm respectively, p value <0.03). A 2 hole locking plate (3.2mm screws) provides significantly greater stability of the syndesmosis to torque when compared with 4.5mm quadricortical fixation.Conclusion
Osteoporotic vertebral deformities are conventionally attributed to fracture, although deformity is often insidious, and bone is known to “creep” under constant load. We hypothesise that deformity can arise from creep that is accelerated by minor injury. Thirty-nine thoracolumbar “motion segments” were tested from cadavers aged 42-92 yrs. Vertebral body BMD was measured using DXA. A 1.0 kN compressive force was applied for 30 mins, while the height of each vertebral body was measured using a MacReflex optical tracking system. After 30 mins recovery, one vertebral body from each specimen was subjected to controlled micro-damage (<5mm height loss) by compressive overload, and the creep test was repeated. Load-sharing between the vertebral body and neural arch was evaluated from stress measurements made by pulling a pressure transducer through the intervertebral disc. Creep was inversely proportional to BMD below a threshold BMD of 0.5 g/cm2 (R2=0.30, P<0.01) and did not recover substantially after unloading. Creep was greater in the anterior cortex compared to the posterior (p=0.01) so that anterior wedge deformity occurred. Vertebral micro-damage usually affected a single endplate, causing creep of that vertebra to increase in proportion to the severity of damage. Anterior wedging of vertebral bodies during creep increased by 0.10o (STD 0.20o) for intact vertebrae, and by 0.68o (STD 1.34o) for damaged vertebrae. Creep is substantial in elderly vertebrae with low BMD, and is accelerated by micro-damage. Preferential loss of trabeculae from the anterior vertebral body could explain greater anterior creep and vertebral wedging.