Supraspinatus and infraspinatus tears (Massive Rotator Cuff Tear- MRCT) cause compensatory activation of the teres minor (TM) and subscapularis (SubS) to maintain humeral head alignment. This study measures force changes in TM and SubS using a dynamic shoulder testing setup. We hypothesize that combining superior capsule reconstruction (SCR) and lower trapezius tendon (LTT) transfer will correct rotator cuff forces. Eight fresh-frozen human shoulder specimens from donors aged 55-75 (mean = 63.75 years), balanced for gender, averaging 219.5 lbs, were used. Rotator cuff and deltoid tendons were connected to force sensors through a pulley system, with the deltoid linked to a servohydraulic motor for dynamic force measurement. The system allowed unrestricted humeral abduction from 0 to 90 degrees.Introduction
Methods
The molecular mechanisms underlying non-union bone fractures largely remain elusive. Recently, spatial transcriptomics approaches for musculoskeletal tissue samples have been developed requiring direct placement of histology sections on barcoded slides. However, Formalin-Fixed-Paraffin-Embedded (FFPE) bone sections have been associated with limited RNA quality and read depth compared to soft tissue. Here, we test spatial transcriptomics workflows based on transcriptomic probe transfer to characterize molecular features discriminating non-union and union bone fractures in mice. Histological sections (n=8) used for spatial transcriptomics (Visium CytAssist FFPE; 10x Genomics, n=4 on glass slides, n=4 on hydrogel-coated slides) were obtained from a fracture healing study in female 20-week-old C57BL/6J mice receiving either a femur osteotomy (0.7mm) or a segmental defect (2.4mm) (license 22/2022, Grisons CH). Sequence alignment and manual segmentation of different tissues (bone, defect region/callus, bone marrow, muscle) were performed using SpaceRanger and LoupeBrowser (10x Genomics). Differential gene expression was performed using DESeq2 (Seurat) followed by Gene-Set-Enrichment-Analysis (GSEA) of Gene Ontology (ClusterProfiler). Group comparison of quality measures was done using a Welch's t-test. Results are given as mean±standard deviation.Background
Method
Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes. 10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler force plate. An inverse kinematic model in Visual 3D allowed for no translation of the hip joint centre. 6 degrees of freedom were allowed at other joints. Data were analysed using JASP with a paired samples t-test.Introduction
Method
The human wrist is a highly complex joint, offering extensive motion across various planes. This study investigates scapholunate ligament (SLL) injuries’ impact on wrist stability and arthritis risks using cadaveric experiments and the finite element (FE) method. It aims to validate experimental findings with FE analysis results. The study utilized eight wrist specimens on a custom rig to investigate Scapho-Lunate dissociation. Contact pressure and flexion were measured using sensors. A CT-based 3D geometry reconstruction approach was used to create the geometries needed for the FE analysis. The study used the Friedman test with pairwise comparisons to assess if differences between testing conditions were statistically significant.Introduction
Method
The most frequent diagnosis in young adults undergoing total hip arthroplasty (THA) is osteonecrosis of the femoral head (ONFH), an evolving and disabling condition with an increasing prevalence worldwide. Treatment of ONFH remains a challenge mainly because of a lack of understanding of the disease's pathophysiological basis. This study investigated the biological processes that could be affected by ONFH by comparing the microstructure, histological characteristics and transcriptomic profile of trabecular bone from the femoral head (FH) and the intertrochanteric region (IT) of patients suffering from this condition. A total of 18 patients with idiopathic ONFH undergoing THA in our institution were included. Trabecular bone explants were taken intraoperatively from the FH and the IT of patients. Bone microstructure was examined by micro-computed tomography (micro-CT). After bone sectioning, histological features were studied by hematoxylin and eosin staining. Differential gene expression was investigated using a microarray platform.Introduction
Method
Kienböck's disease is generally defined as the collapse of the lunate bone, and this may lead to early wrist osteoarthritis. Replacing the collapsed lunate with an implant has regained renewed interest with the advancing technology of additive manufacturing, enabling the design of patient-specific implants. The aims of this project are (1) to determine how accurate it is to use the contralateral lunate shape as a template for patient-specific lunate implants, and (2) to study the effects of shape variations wrist kinematics using 4D-computed tomography (CT) scanning. A 3D statistical shape model (SSM) of the lunate was built based on bilateral CT scans of 54 individuals. Using SMM, shape variations of the lunate were identified and the intra- and inter-subject shape variations were compared by performing an intraclass correlation analysis. A radiolucent motor-controlled wrist-holder was designed to guide flexion/extension and radial/ulnar deviation of Introduction
Methods
A long nail is often recommended for treatment of complex trochanteric fractures but requires longer surgical and fluoroscopy times. A possible solution could be a nail with an appropriate length which can be locked in a minimally invasive manner by the main aiming device. We aimed to determine if such a nail model* offers similar structural stability on biomechanical testing on artificial bone as a standard long nail when used to treat complex trochanteric fractures. An artificial osteoporotic bone model was chosen. As osteosynthesis material two cephalomedullary nails (CMN) were chosen: a superior locking nail (SL-Nail) which can be implanted with a singular targeting device, and a long nail (long-nail) with distal locking using free-hand technique. AO31-A2.2 fractures were simulated in a standardized manner. The insertion of the nail was strictly in accordance with the IFU and surgical manual of the manufacturer. The nail was locked dynamically proximally and statically distally. Axial height of the construct, varus collapse, and rotational deformity directly after nail insertion were simulated. A Universal Testing Machine was used. Measurements were made with a stereo-optic tracking system. Reactive movements were recorded and evaluated in all six degrees of freedom. A comparative analysis provided information about the stability and deformation of the assemblies to be compared.Introduction
Method
Hip prosthetic joint infection (PJI) is a debilitating complication following joint replacement surgery, with significant impact on patients and healthcare systems. The INFection ORthopaedic Management: Evidence into Practice (INFORM: EP) study, builds upon the 6-year INFORM programme by developing evidence-based guidelines for the identification and management of hip PJI. A panel of 21 expert stakeholders collaborated to develop best practice guidelines based on evidence from the previous INFORM research programme. An expert consensus process was used to refine guidelines using RAND/UCLA criteria. The guidelines were then implemented over a 12-month period through a Learning Collaborative of 24 healthcare professionals from 12 orthopaedic centres in England. Qualitative interviews were conducted with 17 members of the collaborative and findings used to inform the development of an implementation support toolkit. Patient and public involvement contextualised the implementation of the guidelines. The study is registered with the ISCRTN (34710385).Introduction
Methods
Diabetes mellitus type 2 (DMT2) patients often develop Achilles tendon (AS) degeneration. The ZDF rat model is often used to study DMT2. Hence, this study investigated whether tenocytes isolated from diabetic and non diabetic ZDF rats respond differentially to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis (TNF)α. AS tenocytes isolated from adult diabetic (fa/fa) or lean (fa/+) Zucker Diabetic Fatty (ZDF) rats were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L Introduction
Method
Understanding knee joint biomechanics is crucial, but studying Anterior cruciate ligament (ACL) biomechanics in human adolescents is challenging due to limited availability cadaveric specimens. This study aims to validate the adolescent porcine stifle joint as a model for ACL studies by examining the ACL's behavior under axial and torsion loads and assessing its deformation rate, stiffness, and load-to-failure. Human knee load during high-intensity sports can reach 5-6 times body weight. Based on these benchmarks, the study applied a force equivalent to 5-times body weight of juvenile porcine samples (90 pounds), estimating a force of 520N. Experiments involved 30 fresh porcine stifle joints (Yorkshire breed, Avg 90 lbs, 2-4 months old) stored at -22°C, then thawed and prepared. Joints were divided into three groups: control (load-to-failure test), axially loaded, and 30-degree torsion loaded. Using a servo-hydraulic material testing machine, the tibia's longitudinal axis was aligned with the load sensor, and specimens underwent unidirectional tensile loading at 1 mm/sec until rupture. Data on load and displacement were captured at 100 Hz.Introduction
Methods
Assessment of the humeral head translation with respect to the glenoid joint, termed humeral head migration (HHM), is crucial in total shoulder arthroplasty pre-operative planning. Its assessment informs current classification systems for shoulder osteoarthritis as well as the evaluation of surgical correction. In current clinical practice, HHM assessment relies on computed-tomography (CT) imaging. However, the associated supine position might undermine its functional relevance as it does not reflect the weight-bearing condition with active muscle engagement associated with the upright standing position of most daily activities. Therefore, we assessed to what extent HHM in a supine position is associated with HHM in a range of functional arm positions. 26 shoulder osteoarthritis patients and 12 healthy volunteers were recruited. 3D shapes of the humerus and scapula were reconstructed from their respective CT scans using an image processing softwareIntroduction
Method
Intraoperative navigation systems for lumbar spine surgery allow to perform preoperative planning and visualize the real-time trajectory of pedicle screws. The aim of this study was to evaluate the deviation from preoperative planning and the correlations between screw deviation and accuracy. Patients affected by degenerative spondylolisthesis who underwent posterior lumbar interbody fusion using intraoperative 3D navigation since April 2022 were included. Intraoperative cone-beam computed tomography (CBCT) was performed before screw planning and following implantation. The deviation from planning was calculated as linear, angular, and 3D discrepancies between planned and implanted screws. Accuracy and facet joint violation (FJV) were evaluated using Gertzbein-Robbins system (GRS) and Yson classification, respectively. Statistical analysis was performed using SPSS version28. One-way ANOVA followed by Bonferroni post-hoc tests were performed to evaluate the association between GRS, screw deviation and vertebral level. Statistical significance was set at p<0.05.Introduction
Method
Femoral head osteonecrosis (FHO) is a condition in which the inadequate blood supply disrupts osteogenic-angiogenic coupling that results in diminishment of femoral perfusion and ends up with FHO. The insufficient knowledge on molecular background and progression pattern of FHO and the restrictions in obtaining human samples bring out the need for a small animal trauma model to research FHO aetiology. Hence, this study aims to develop a mouse trauma model to elucidate the molecular mechanisms behind FHO. Left femoral head was dislocated from the hip joint, ligamentum teres was cut, and a slight circular incision was done around the femoral neck of 8-week-old male C57BL/6J mice to disrupt the blood supply to femoral head. Right hip joint was left unoperated as control. Animals (n=5 per time point) were sacrificed on 2-3-4-6-8-10-12 weeks, and ex-vivo µCT was taken to assess bone structural parameters. Haematoxylin/eosin (HE)- and immunohistochemical-staining (IHCS) for CD31 and EMCN were done to observe histology and marrow-specific H-type vascular structures, respectively.Introduction
Method
Articular cartilage has a low self-regeneration capacity. Cartilage defects have to be treated to minimize the risk of the onset of osteoarthritis. Bioactive glass (BG) is a promising source for cartilage tissue engineering. Until now, conventional BGs (like BG1393) have been used, mostly for bone regeneration, as they are able to form a hydroxyapatite layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to study the effect of 3D printed hydrogel scaffolds supplemented with spheres of the BG CAR12N to improve the chondrogenesis of mesenchymal stem cells (MSCs). Based on our new glass composition (CAR12N), small BG spheres (25-40 µm) were produced and mixed with hydrogel and primary human (h) MSCs. Grid printed scaffolds were cultivated up to 21 days in expansion or chondrogenic differentiation medium. Macroscopical images of the scaffolds were taken to observe surface changes. Vitality, DNA and sulfated glycosaminoglycan (GAG) content was semiquantitatively measured as well as extracellular matrix gene transcription.Introduction
Method
Hip fractures, with a global age-standardised incidence rate (per 100,000 population) of 187.2 (2019), are a major public health problem. With a 7.71 billion population worldwide in 2019, hip fractures, in general, are affecting around 14.43 million people per year globally. We aim to provide a nationwide epidemiological analysis of trochanteric fractures and their respective surgical treatments. In this study we research the epidemiology of trochanteric and subtrochanteric fractures, as well as their most common kinds of osteosynthesis, on a nationwide scale in Germany. Data was retrieved from the national database of the German Ministry of Interior. ICD-10-GM and OPS-data from the period of 2006-2020 were analyzed, all patients with trochanteric/subtrochanteric fractures were included. Patients were grouped by age/gender and linear-regression was performed to calculate statistically significant correlations between variables/incidences.Introduction
Method
Immunomodulation represents a novel strategy to improve bone healing in combination with low doses of bone morphogenetic growth factors like BMP-2. This study aims to investigate the effect and timing of monoclonal anti-IL-1ß antibody administration with 1μg BMP-2 on bone healing over 14 weeks in a rat femur segmental defect model. 2 mm femoral defects were created in 22-27 weeks-old female Fischer F344 rats, internally fixed with a plate (animal license: GR/19/2022) using established protocols for analgesia and anesthesia. Animals (n=4/group) received either a collagen sponge, a collagen sponge+1μg BMP-2 (InductOs, Medtronic) or a collagen sponge+1μg BMP-2 with a monoclonal anti-IL-1ß antibody (BioXCell, 10 mg/ml), administered intravenously under anesthesia every third day until day 15, from day 0 or 3. Introduction
Method
Many patients with obesity experience knee pain. Excess body weight is a modifiable risk factor for osteoarthritis (OA) and weight loss is encouraged in patients with OA. Bariatric surgery could improve or limit the progression of these conditions through significant weight loss. The Oxford Knee Score (OKS) is a validated tool in the assessment of knee replacement surgery for OA. We present a novel application of the OKS to assess knee pain & function after weight loss surgery. The primary aim of this study was to assess whether there was a significant difference in mean OKS before and 24 months after weight loss surgery. Eighteen female participants were included in this study. They underwent sleeve gastrectomy or Roux-en-Y gastric bypass. Patient demographics, body mass index (BMI) and OKS were collected pre- and 24 months post operatively.Introduction
Method
Treatment strategies for irreparable Massive Rotator Cuff Tears (MRCTs) are debatable, especially for younger, active patients. Superior Capsular Reconstruction (SCR) acts as a static stabilizer, while Lower Trapezius Transfer (LTT) serves as a dynamic stabilizer. This study compares the biomechanical effectiveness of SCR and LTT, hypothesizing that their combination will enhance shoulder kinematics. Eight human shoulders from donors aged 55-75 (mean = 63.75 years), balanced for gender, averaging 219.5 lbs, were used. Rotator cuff and deltoid tendons were connected to force sensors through a pulley system, with the deltoid linked to a servohydraulic motor for dynamic force measurement.Introduction
Methods
Early identification of patients at risk for impaired tendon healing and corresponding novel therapeutic approaches are urgent medical needs. This study aimed to clarify the role of CD3+ T-cells during acute Achilles tendon (AT) healing. Blood and hematoma aspirate were taken from 26 patients during AT reconstruction, and additional blood samples were obtained during clinical follow-up at 6, 26 and 52 weeks after surgery. T-cell subsets were analyzed by flow cytometry using CD3, CD4, CD8, CD11a, CD57 and CD28 antibodies. Clinical follow-up included functional tests, MRI assessments, and subjective questionnaires. In vitro, the functional behavior of patient-derived tenocytes was investigated in co-cultures with autologous unpolarized CD4+ or CD8+ T-cells, or IFNy-polarized CD8+ or IL17-polarized CD4+ Tcells (n=5-6). This included alterations in gene expression (qPCR), MMP secretion (ELISA), migration rate (scratch wound healing assay) or contractility (collagen gels). Analysis revealed that elevated CD4+ T-cell levels and reduced CD8+ T-cell levels (increased CD4/CD8 ratio) in hematoma aspirate and pre-operative blood were associated with inferior clinical outcomes regarding pain and function at 26 and 52 weeks. Increased levels of CD8+ -memory T-cell subpopulations in blood 6 weeks after surgery were associated with less tendon elongation. In vitro, tenocytes showed increased MMP1/2/3 levels and collagen III/I ratio in co-culture with unpolarized and/or IL17-polarized CD4+ T-cells compared to unpolarized CD8+ T-cells. This coincided with increased IL17 receptor expression in tenocytes co-cultured with CD4+ T-cells. Exposure of tenocytes to IL17-polarized CD4+ T-cells decreased their migration rate and increased their matrix contractility, especially compared to IFNy-polarized CD8+ T-cells. The CD4+ /CD8+ T-cell ratio could serve as prognostic marker for early identification of patients with impaired AT healing potential. Local reduction of CD4+ T-cell levels or their IL17 secretion represent a potential therapeutic approach to improve AT healing and to prevent weakening of the tendon ECM.
While high-performance ceramics like alumina and zirconia exhibit excellent wear resistance, they provide poor osseointegration capacity. As osseointegration is crucial for non-cemented joint prostheses, new techniques have been successfully developed for biofunctionalizing high-performance ceramic surfaces. Stable cell adhesion can be achieved by covalently bound specific peptides. In this study we investigate the effect of sterilization processes on organo-chemically functionalized surfaces. To enhance the performance of alumina-toughened zirconia ceramics (ATZ), a 3-aminopropyldiisopropylethoxysilane (APDS) monolayer was applied and coupled with cyclo-RGD peptides (cRGD) by using bifunctional crosslinker bis(sulfosuccinimidyl)suberat (BS³). The samples were sterilized using e-beam or gamma-sterilization at 25 kGy, either before or after biofunctionalization with cRGD. Functionalization stability was investigated by contact angle measurements. The functionality of cRGD after sterilization was demonstrated using proliferation tests and cytotoxicity assays. Immunofluorescence staining (pFAK, Actin, DAPI) was conducted to evaluate the adhesion potential between the samples and human mesenchymal stem cells (hMSCs). Functionalized samples before and after sterilization showed no significant difference regarding their contact angles. A proliferation test demonstrated that the cells on functionalized samples proliferate significantly more than on untreated samples before and after sterilization. hMSCs showed a significant higher proliferation on gamma sterilized samples compared to all other groups after 14 days. It was confirmed that the samples did not exhibit cytotoxic behavior before or after sterilization. Fluorescence microscopy demonstrated that both, cells on sterilized and on non-sterilized samples, expressed high levels of pFAK-Y397. The investigated functionalization enables improved adhesion and proliferation of hMSCs and is stable against the investigated sterilization processes. This is of importance as the option of having a sterile product enables the start of the translation of this biofunctional coating towards preclinical and subsequently first-in-man applications.