header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 66 - 66
1 May 2016
Murase K Tsutsumi S Takai S
Full Access

The Total Knee Replacement (TKR) has been used as the effective treatment for osteoarthritis of the knee. The load of the knee joint is generally applied at the heel strike as the impact loading. In the elderly who had muscle weakness or weakening eyesight, it can be anticipated that more excessive loads are often added to the knees when they stumble or trip over. And the varus / valgus alignments of the femur and tibia differs among patients. However, most finite element analyses considering the effect of the alignments have rarely been performed.

In this study, the mounting angle of the tibia component in the TKR knee was changed, and the effect of the change on the load transfer was assess using finite element analyses. Based on the CT images, the three-dimensional finite element models of the natural knee joint and TKR knee joint were created [Fig. 1]. Each model was constructed from hexahedoral elements with the isotropic material. The numbers of nodes and elements were 10,666 and 8,677 respectively. Under normal alignment, 5 degrees of varus, and 5 degrees of valgus knee, the static analyses at an applied load of 1000N and impact analyses at an applied load of 50 kg were performed. LS-DYNA ver760 software was used for the analyses.

The finite element analyses results showed that under the static loading, no stress shielding was observed in the tibial cancellous bone of the intact knee or TKR knee, and the maximum compressive stress was 1.5 MPa. While under the impact loading, the compressive stress generated inside of the cancellous bone was three times higher in the TKR knee joint than that in the intact knee, and the load transfer time was reduced. This result reveals that the cancellous bone have load bearing function especially in the impact condition.

When the impact load was applied to the varus and valgus TKR knee, the stress shielding was observed in the tibial cancellous bone, especially in the varus condition. In a case where the tibia component was mounted by tilting it at −5 to 5 degrees depending on the varus/valgus of the knee, the stress shielding was alleviated; the distribution of load was almost the same as that of the TKR knee joint model under the normal alignment [Fig.2]. The effect of a slight difference in the alignment on the stress distribution is expected to be a contributor to determine artificial knee joint shape, loading condition, and other design factors in developing revision arthroplasty or custom-made implant.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 60 - 60
1 Jan 2016
Murase K Tamamura S Takai S Tsutsumi S Tanaka E
Full Access

The interface condition between the prosthesis and the bone tissue must play important roles during dynamic loading transfer through the knee joint. In this study, the three- dimensional impact finite element (FE) simulations were performed to investigate the impact stress propagation.

The FE models of a totally replaced knee joint were constructed with the high shape fidelity. The models included the cortical and cancellous bone, articular cartilage, bone marrow, and the artificial femoral and tibial components. The artificial components were set to the femoral and tibial contact area. The FE meshes had 7251 nodal points and 5547 hexahedral elements (Figure 1).

The interfacial condition between the artificial component had two kind of contact situations, bonding situation and no-bonding ones. In the bonding situation, the interface between the artificial components and the cancellous bone had fully fixations. The no-bonding allowed the tie-breaking of each other although the interface had the high coefficient of friction. The three kind of the impact loading (1, 5, and 10kgW) were applied from the proximal femur to the distal side of tibia.

In the FE simulations, the impact stress propagated to the tibia through the TKR joint components during several milliseconds. On the interfacial surface at the cancellous side of the proximal tibia, the difference in the stress distribution was observed according to the contact situation of the TKR component (Figure 2). The fully fixation (tied to each other) model showed the high compressive stress on the interface. On the other hand, in the no-bonding model, the compressive stress distributed discontinuously and the high compressive stress was observed only in the hole area and edge of the tibial component during the impact loading. In previous research, the cancellous bone had important roles for the load transmission inside the joint especially under the impact loading condition. However, this study indicated that the stress shielding was caused by the imperfect bonding at the interface. More consideration of the interface situation between the bone and component is required to keep stability for impact loading.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 77 - 77
1 Jan 2016
Nakanishi Y Nishi N Chikaura H Kuwahata K Nakashima Y Murase K Miura H Higaki H Mizuta H Iwamoto Y
Full Access

This study presents the use of precision surface machining on artificial joint bearing surfaces in order to inhibit macrophage activation. Ultra-high molecular weight polyethylene (UHMWPE) is widely used as a bearing material in polymer-on-hard joint prostheses. However, UHMWPE wear particles are considered to be a major factor in long-term osteolysis and implant loosening. Several studies report that wear particle size is a critical factor in macrophage activation, with particles in the size range of 0.1 – 1.0 μm being the most biological active. The surface for a conventional Co-Cr-Mo alloy joint implant generally has a 10.0 – 20.0 nm roughness. After precision machining, the Co-Cr-Mo alloy surface had a 1.0 – 2.0 nm roughness with scattered concave shapes up to 50 nm in depth. This precision surface machining method used a typical lapping method, but the relationship between the slurry and the machining surface was strictly controlled in order to emphasize the micro-erosion mechanism. A pin-on-disc wear tester capable of multidirectional motion was used to verify that the new surface was the most appropriate for joints. Tests were carried out in 25% (v/v) fetal calf serum with sodium azide to retard bacterial growth. UHMWPE pins, 12.0 mm in diameter with a mean molecular weight of 6.0 million, were placed on the Co-Cr-Mo alloy disc at a contact pressure of 6.0 MPa. A sliding speed of 12.1 mm/s, and a total sliding distance of 15.0 km were applied. The new surface reduced the amount of UHMWPE wear, which would ensure the long-term durability of joints. The new surface also enlarged the size of UHMWPE particles, but did not change their morphological aspect. Primary human peripheral blood mononuclear phagocytes were cultured with the particles. The wear particles generated on the new surface inhibited the production of IL-6, which indicates a reduction of induced tissue reaction and joint loosening.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 60 - 60
1 Jan 2016
Murase K Tamamura S
Full Access

In biomechanical finite element (FE) simulations, the mechanical nonlinear behaviors must be considered frequently and depend on several properties, such as structural, material, and contact situation. The hexahedral meshes were widely applied to the modeling with the mechanical nonlinearities and can decrease the computer resources and improve the accuracy of the simulations. However, it is quite difficult to construct the three-dimensional hexahedral meshes of complicated shapes such as human joints.

This study proposes the development of the semi-automatic meshing technique which consists of only hexahedral elements, thereby reducing the number of elements without spoiling the shape fidelities. In order to create the three-dimensional models of the tibial plateau and femoral condyle, the simply-shaped ‘seed’ models consisting of only hexahedral elements were prepared. The seed meshes were located into the surface of the target bone and expanded until they fitted the target surface. When the seed meshes expanded and intersected with the target surface, the contact condition was detected and the seed surface slide on the target one. These procedures are repeated until the seed meshes filled up inside the complicated target surface. Figure 1 shows the transformed and filled seed meshes inside the surface. The boundary between the cortical and cancellous bone was kept clearly. In the finite element meshes, there was no concentration of elements, and each hexahedral element had the good aspect ratio.

Figure 2 shows the impact FE simulation of the TKR joint model, which was constructed by hexahedral elements using this technique. The impact stress propagated cleary through the TKR joint. The number of elements were reduced by a sixth, compared with that of the tetrahedral ones. Because the number of nodes and elements of the model can be defined beforehand, it is easy to predict the scale of the final model. Therefore, this technique is very effective in creating the huge skeltal models which build the complicated biomaterial shapes by the hexahedral elements.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 441 - 441
1 Dec 2013
Murase K Tsutsumi S Takai S Yoshino N
Full Access

The contact condition in the human knee joint must play important roles especially in dynamic loading situations where the loads transfer in the knee. In this study, the impact stress propagations through the inside of the knee joint were simulated using the three-dimensional finite element analysis (FEA). And the differences in the stress distribution were investigated between the intact knee and the total replacement condition.

The finite element (FE) models of an intact human knee joint and a total replaced knee joint were constructed with high shape fidelity. The intact model included the cortical bone, cancellous bone, articular cartilage, bone marrow, and meniscus. And the total replacement knee FE model, which is consisted of the artificial femoral and tibial components were also prepared to compare the impact propagations with the intact model (Figure 1). Impact load were applied to the proximal femur of the FE models under the same conditions as those of the weight-drop experiments with the knee joint specimens.

The FEA results showed that the impact stress propagated to the tibia through the knee joint for several milliseconds. The values and the time dependent change of the compressive strain on the cortical surface had good agreement with the experimental results. The compressive stress mainly propageted at the medial side, with 1.0 MPa at 1.2 milliseconds.

Especially, the impact stress propagated not only in the cortical surface area which has hard material property but also in the soft cancellous bone region inside the knee joint. The mass density of the cancellous bone has similar to that of the cortical bone, and thus the role of the load bearing in the cancellous area must be much increasing under the impact condition.

In the total replacement model, concentration of the impact compressive stress was observed with 2.8 MPa at the tibial region, while not under the normal intact conditions (Figure 2). Since the total replacement model is formed of different materials and the impact propagations were inhibited by the interfacial condition, such as sliding or debonding, it is considered that the contact condition between such materials have a great effect on the stress propagation.