Abstract
The contact condition in the human knee joint must play important roles especially in dynamic loading situations where the loads transfer in the knee. In this study, the impact stress propagations through the inside of the knee joint were simulated using the three-dimensional finite element analysis (FEA). And the differences in the stress distribution were investigated between the intact knee and the total replacement condition.
The finite element (FE) models of an intact human knee joint and a total replaced knee joint were constructed with high shape fidelity. The intact model included the cortical bone, cancellous bone, articular cartilage, bone marrow, and meniscus. And the total replacement knee FE model, which is consisted of the artificial femoral and tibial components were also prepared to compare the impact propagations with the intact model (Figure 1). Impact load were applied to the proximal femur of the FE models under the same conditions as those of the weight-drop experiments with the knee joint specimens.
The FEA results showed that the impact stress propagated to the tibia through the knee joint for several milliseconds. The values and the time dependent change of the compressive strain on the cortical surface had good agreement with the experimental results. The compressive stress mainly propageted at the medial side, with 1.0 MPa at 1.2 milliseconds.
Especially, the impact stress propagated not only in the cortical surface area which has hard material property but also in the soft cancellous bone region inside the knee joint. The mass density of the cancellous bone has similar to that of the cortical bone, and thus the role of the load bearing in the cancellous area must be much increasing under the impact condition.
In the total replacement model, concentration of the impact compressive stress was observed with 2.8 MPa at the tibial region, while not under the normal intact conditions (Figure 2). Since the total replacement model is formed of different materials and the impact propagations were inhibited by the interfacial condition, such as sliding or debonding, it is considered that the contact condition between such materials have a great effect on the stress propagation.