Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles ( Cite this article:
In 1997 the Birmingham Hip Resurfacing was introduced to address the needs of young active patients. Alternative designs were introduced to try and improve wear performance. The aim of this study was a comparative cohort study of two types of metal-on-metal bearing to determine the mechanism of failure at 15 years. The study reviewed 91 Brimingham Hip Resurfacings (BHR) (Smith and Nephew) and 715 DUROM hip resurfacing (Zimmer) procedures in prior to 2009. Failure was defined as revision of either component for any reason. Kaplan-Meyer survivorship analysis performed. Routine follow-up with serum metal ion levels and radiographs. Mean follow-up was 17.9 years (range 15.2 – 25.1). The mean age at operation was 51.6 years (SD 8.6, range 20.7 to 70.2), including 299 women (37.1%). The Birmingham resurfacing demonstrated 92.3% survivorship at 15 years (SE 2.8, 95% CI 3.9 – 7.8) and 90.0% at latest follow-up (SE 3.5, 95% CI 4.9 to 9.4). By comparison, the DUROM survivorship at 15 years was 89.1% at 15 years (SE 1.2, 95% CI 2.0 to 2.5) and 87.4% (SE 1.3, 95% CI 2.5 to 2.3) at latest follow-up. There was no statistically significant difference in survivorship between groups (p= 0.32). Survival in male patients was 92.7% compared to 80.0% in females. The reported failures occurred from Adverse Reaction to Metal Debris (32 patients), periprosthetic femoral neck fracture (6) and aseptic loosening (41), PJI (12) and undiagnosed pain (6). The mean cobalt and chromium levels at last follow-up were 33.4 nmol/L and 36.5 nmol/L respectively. This study demonstrates two differently designed metal-on-metal hip resurfacing provided a durable alternative to total hip replacement, particularly in younger male patients with osteoarthritis. Differences in design did determine the reason for revision with acetabular fixation being one of the principal failure mechanisms for the DUROM compared to elevated ion levels.
This study evaluates the association between consultant and hospital volume and the risk of re-revision and 90-day mortality following first-time revision of primary hip replacement for aseptic loosening. We conducted a cohort study of first-time, single-stage revision hip replacements (RHR) performed for aseptic loosening and recorded in the National Joint Registry (NJR) data for England, Wales, Northern Ireland, and the Isle of Man between 2003 and 2019. Patient identifiers were used to link records to national mortality data, and to NJR data to identify subsequent re-revision procedures. Multivariable Cox proportional hazard models with restricted cubic splines were used to define associations between volume and outcome. Among 12,676 RHR there were 513 re-revisions within two years, and 95 deaths within 90 days of surgery. The risk of re-revision was highest for a consultant's first RHR (Hazard Ratio (HR) 1·58 (95%CI 1·16 to 2·15)) and remained significantly elevated for their first 26 cases (HR 1·26 (95%CI 1·00 to 1·58)). Annual consultant volumes of five/year were associated with an almost 30% greater risk of re-revision (HR 1·28 (95%CI 1·00 to 1·64)) and 80% greater risk of 90-day mortality (HR 1·81 (95%CI 1·02 to 3·21)) compared to volumes of 20/year. RHR performed at hospitals which had cumulatively undertaken fewer than 168 RHR were at up to 70% greater risk of re-revision (HR 1·70 (95% CI 1·12 to 2·60)), and those having undertaken fewer than 309 RHR were at up to three times greater risk of 90-day mortality (HR 3·06 (95% CI 1·19 to 7·86)). This study found a significantly higher risk of re-revision and early postoperative mortality following first-time single-stage RHR for aseptic loosening when performed by lower-volume consultants and at lower-volume institutions, supporting the move towards the centralisation of such cases towards higher-volume units and surgeons.
Given the prolonged waits for hip arthroplasty seen across the U.K. it is important that we optimise priority systems to account for potential disparities in patient circumstances and impact. We set out to achieve this through a two-stage approach. This included a Delphi-study of patient and surgeon preferences to determine what should be considered when determining patient priority, followed by a Discrete Choice Experiment (DCE) to decide relative weighting of included attributes. The study was conducted according to the published protocol ([ For the Delphi study there were 43 responses in the first round, with a subsequent 91% participation rate. Final consensus inclusion was achieved for Pain; Mobility/Function; Activities of Daily Living; Inability to Work/Care; Length of Time Waited; Radiological Severity and Mental Wellbeing. 70 individuals subsequently contributed to the DCE, with radiological severity being the most significant factor (Coefficient 2.27 \[SD 0.31\], p<0.001), followed by pain (Coefficient 1.08 \[SD 0.13\], p<0.001) and time waited (Coefficient for 1-month additional wait 0.12 \[SD 0.02\], p<0.001). The calculated trade-off in waiting time for a 1-level change in pain (e.g., moderate to severe pain) was 9.14 months. These results present a new method of determining comparative priority for those on primary hip arthroplasty waiting lists. Evaluation of potential implementation in clinical practice is now required.
Elevated blood cobalt secondary to metal-on-metal (MoM) hip arthroplasties has been shown to be a risk factor for developing cardiovascular complications including cardiomyopathy. Published case reports document cardiomyopathy in patients with blood cobalt levels as low as 13µg/l. Clinical studies have found conflicting evidence of cobalt-induced cardiomyopathy in patients with MoM hips. The extent of cardiovascular injury, measured by global longitudinal strain (GLS), in patients with elevated blood cobalt levels has not previously been examined. Sixteen patients with prospectively collected blood cobalt ion levels above 13µg/l were identified and matched with eight patients awaiting hip arthroplasty with no history of cobalt implants. Patients underwent echocardiogram assessment including GLS. Patients with MoM hip arthroplasties had a mean blood cobalt level of 29µg/l compared to 0.01µg/l in the control group. There was no difference or correlation in EF, left ventricular (LV) end systolic dimension, LV end diastolic dimension, fractional shortening, ventricular wall thickness or E/e’ ratio. However, GLS was significantly reduced in patients with MoM hip arthroplasties compared to those without (−15.2% v −18%, (MoM v control) p= 0.0125). Pearson correlation demonstrated that GLS is significantly correlated with blood cobalt level (r= 0.8742, p=0.0009). For the first time, this study has demonstrated reduced cardiac function in the presence of normal EF as assessed by GLS in patients with elevated cobalt above 13µg/l. As GLS is a more sensitive measure of systolic function than EF, routine echocardiogram assessment including GLS should be performed in all patients with MoM hip arthroplasties and elevated blood cobalt.
Elevated blood cobalt secondary to metal-on-metal (MoM) hip arthroplasties has been shown to be a risk factor for developing cardiovascular complications including cardiomyopathy. Published case reports document cardiomyopathy in patients with blood cobalt levels as low as 13µg/l (13ppb, 221nmol/l). Clinical studies have found conflicting evidence of cobalt-induced cardiomyopathy in patients with MoM hips. Global longitudinal strain (GLS) is an echocardiography measurement known to be more sensitive than ejection fraction at diagnosing early cardiomyopathies. The extent of cardiovascular injury, as measured by GLS, in patients with elevated blood cobalt levels has not previously been examined. Sixteen patients with documented blood cobalt ion levels above 13µg/l were identified from a regional arthroplasty database. They were matched with eight patients awaiting hip arthroplasty with no history of cobalt implants. All patients underwent electrocardiogram and echocardiogram assessment for signs of cardiomyopathy including GLS. Patients with MoM hip arthroplasties had a mean blood cobalt level of 29µg/l (495nmol/l) compared to 0.01µg/l (0.2nmol/l) in the control group. There was no difference or correlation in ejection fraction (EF), left ventricular (LV) end systolic dimension, LV end diastolic dimension, fractional shortening, ventricular wall thickness or E/e’ ratio. However, GLS was significantly reduced in patients with MoM hip arthroplasties compared to those without (−15.2% v −18%, (MoM v control) p= 0.0125). Pearson correlation demonstrated that GLS is significantly correlated with blood cobalt level (r= 0.8742, p=0.0009). For the first time, this study has demonstrated reduced cardiac function in the presence of normal EF as assessed by GLS in patients with elevated cobalt above 13µg/l. As GLS is a more sensitive measure of systolic function than EF, routine echocardiogram assessment including GLS should be performed in all patients with MoM hip arthroplasties and elevated blood cobalt above 13µg/l. Further work is recommended to assess if these cardiac changes are present in patients with elevated blood cobalt levels below 13µg/l.
Cement-in-cement revision of the femoral component represents a widely practiced technique for a variety of indications. In this study we compare the clinical and radiological outcomes of two polished tapered stems. From our prospectively collated database we identified all patients undergoing cement-in-cement revision from January 2005 – 2013 who had a minimum of two years follow-up. All cases were performed by the senior author using either an Exeter short revision stem or the C-stem AMT high offset No 1. Patients were followed-up annually with clinical and radiological assessment. Ninety-seven patients matched the inclusion criteria. There were 50 Exeter and 47 C-stem AMT components. There were no significant differences between the patient demographics in either group. Mean follow-up was 9.7 years. A significant improvement in OHS, WOMAC and SF-12 scores was observed in both cohorts. Leg lengths were significantly shorter in the Exeter group, with a mean of -4mm in this cohort compared to 0mm in the C-stem AMT group. One patient in the Exeter group had early evidence of radiological loosening. In total, 16 patients (15%) underwent further revision of the femoral component (seven in the C-stem AMT group and nine in the Exeter group). No femoral components were revised for aseptic loosening. There were two cases of femoral component fracture in the Exeter group. Our series shows promising long-term outcomes for the cement-in-cement revision technique using either the Exeter or C-stem AMT components. These results demonstrate that cement-in-cement revision using a double or triple taper-slip design is a safe and reliable technique when used for the correct indications.
Periprosthetic fractures (PPF) of the femur following total hip arthroplasty represent a significant complication with a rising incidence. The commonest subtype is Vancouver B2 type, for which revision to a long uncemented tapered fluted stem is a widely accepted management. In this study we compare this procedure to the less commonly performed cement-in-cement revision. All patients undergoing surgical intervention for a Vancouver B2 femoral PPF in a cemented stem from 2008 – 2018 were identified. We collated patient age, gender, ASA score, BMI, operative time, blood transfusion requirement, change in haemoglobin (Hb) level, length of hospital stay and last Oxford Hip Score (OHS). Radiographic analysis was performed to assess time to fracture union and leg length discrepancy. Complications and survivorship of implant and patients were recorded. 43 uncemented and 29 cement-in-cement revisions were identified. There was no difference in patient demographics between groups. A significantly shorter operative time was found in the cement-in-cement group, but there was no difference in transfusion requirement, Hb change, or length of hospital stay. OHS was comparable between groups. A non-significant increase in overall complication rates was found in the revision uncemented group, with a significantly higher dislocation rate. Time of union was comparable and there were no non-unions in the cement-in-cement group. A greater degree of stem subsidence was found in the uncemented group. There was no difference in any revision surgery required in either group. Three patients in the uncemented group died in the perioperative period, compared to none in the cement-in-cement group. With appropriate patient selection, both cement-in-cement and long uncemented tapered stem revision represent appropriate treatment options for Vancouver B2 fractures.
Osteoporosis is an international health and financial burden of ever increasing proportions. Current treatments limit the rate of bone resorption and reduce fracture risk, however they are often associated with significant and debilitating side effects. The most commonly used therapies also do not stimulate osteoblast activity 1,2,3. Much current research focus is aimed at the metabolic and epigenetic pathways involved in osteoporosis. MicroRNAs have been shown to play an important role in bone homeostasis and pathophysiological conditions of the musculoskeletal system. Up-regulation of specific microRNAs has been identified We have developed a 3D osteoporotic model from human bone marrow, without the use of scaffold. Magnetic nanoparticles are utilised to form spheroids, which provides a closer representation of the The results of initial monolayer and spheroid experiments will be presented. Optimisation of the osteoporotic bone marrow culture conditions, involving response to differentiation medias, analysis of adipose and bone markers and cell migration in spheroid culture will be displayed. Quantitative and qualitative results, including fluorescence microscopy and in cell western, assessing the monolayer and spheroid cultures will be presented. The development of a pseudo osteoporosis model from healthy bone marrow will also be discussed. This model will form a basis of future work on microRNA targeting. The development of improved therapies for osteoporosis is of great significance due to the predicted rise in incidence of the disease and associated fragility fractures. Targeted therapies, such as the manipulation of microRNA expression, offer the opportunity to increase osteoblastogenesis and decrease osteoclastogenesis, potentially without the associated side effects of older, systemic therapies. We believe our 3D human bone marrow derived osteoporotic model offers the closest relation to the
Dislocation is a major complication following total hip arthroplasty (THA). Aetiology is multi-factorial, but increasing femoral head size may result in lower dislocation rates. The latest England and Wales National Joint Registry (NJR) annual report has highlighted a statistically significant increase in the use of femoral heads of size 36mm+ from 5% in 2005 to 26% in 2009, together with an increase in the use of the posterior approach. The aim of this study was to determine whether national dislocation rates have fallen over the same period. Hospital episode statistics (HES) data for England was analysed so as to determine trends in national rates of 3-, 6-, 12- and 18-month dislocation rates following primary THA performed between 2005 and 2009 (247,546 THAs). 18-month revision rates were also examined.Background
Methods
Metal-on-metal hip resurfacing prostheses are a relatively recent intervention for relieving the symptoms of common musculoskeletal diseases such as osteoarthritis. While some short term clinical studies have offered positive results, in a minority of cases there is a recognised issue of femoral fracture, which commonly occurs in the first few months following the operation. This problem has been explained by a surgeon's learning curve and notching of the femur but, to date, studies of explanted early fracture components have been limited. Tribological analysis was carried out on fourteen retrieved femoral components of which twelve were revised after femoral fracture and two for avascular necrosis (AVN). Eight samples were Durom (Zimmer, Indiana, USA) devices and six were Articular Surface Replacements (ASR, DePuy, Leeds, United Kingdom). One AVN retrieval was a Durom, the other an ASR. The mean time to fracture was 3.4 months. The AVNs were retrieved after 16 months (Durom) and 38 months (ASR). Volumetric wear rates were determined using a Mitutoyo Legex 322 co-ordinate measuring machine (scanning accuracy within 1 micron) and a bespoke computer program. The method was validated against gravimetric calculations for volumetric wear using a sample femoral head that was artificially worn in vitro. At 5mm3, 10mm3, and 15mm3 of material removal, the method was accurate to within 0.5mm3. Surface roughness data was collected using a Zygo NewView500 interferometer (resolution 1nm). Mean wear rates of 17.74mm3/year were measured from the fracture components. Wear rates for the AVN retrievals were 0.43mm3/year and 3.45mm3/year. Mean roughness values of the fracture retrievals (PV = 0.754, RMS = 0.027) were similar to the AVNs (PV = 0.621, RMS = 0.030), though the AVNs had been in vivo for significantly longer. Theoretical lubrication calculations were carried out which found that in both AVN retrievals and in seven of the twelve cases of femoral fracture the roughening was sufficient to change the lubrication regime from fluid film to mixed. Three of these surfaces were bordering on the boundary lubrication regime. The results show that even before the femoral fracture, wear rates and roughness values were high and the implants were performing poorly.
This case series highlights the use of the Ganz approach (trochanteric slide approach) and surgical dislocation for excision of fibrous dysplasia of the femoral neck, pigmented villonodular synovitis and synovial chondromatosis of the hip. The first patient was a 16-year-old girl, who presented with pain in her hip, having fallen whilst playing football. Investigations revealed a fibrous dysplasia, which was successfully excised returning her to an active lifestyle. The second patient was a 27-year-old lady, who presented having suffered left hip pain for four years. She was diagnosed with a pigmented villonodular synovitis, which was excised and the patient was able to return to the gym. The third patient was a 41-year-old lady, who presented after experiencing right hip pain both at night and at rest for a year, without any trauma. She was diagnosed with synovial chondromatosis and returned to all activities of daily living. The Ganz approach allows safe dislocation of the hip joint without the risk of osteonecrosis of the femoral head. We demonstrate that it is possible to obtain excellent exposure of the femoral neck, head and acetabulum to surgically treat these three tumours of the hip. The surgeon can thus be reassured that complete excision of the tumour has occurred. This series can recommend the Ganz approach with trochanteric slide and full surgical dislocation of the hip to excise pigmented villonodular synovitis, synovial chondromatosis and fibrous dysplasia of the hip.