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Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma
and orthopaedic applications, very few progress to inform clinical practice. One key reason for
this is the lack of a clear pathway from development to deployment. In order to assist with
this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI)
framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma
and orthopaedics, based on the IDEAL principles (https://www.ideal-collaboration.net/). Adherence
to the framework would provide a robust evidence-based mechanism for developing trust in
AI applications, where the underlying algorithms are unlikely to be fully understood by clinical
teams.

Article focus
• Safety, reliability, and transparency

concerns are some of the major barriers to
clinical practice integration of artificial
intelligence (AI) in in trauma and ortho-
paedics.

• This study provides a robust evidence
framework for new AI applications,
following a similar pathway to that for the
integration of new surgical devices or
drugs.

• Adherence to the pathway should help to
provide strong support for the safe and
effective future integration of AI into all
aspects of trauma and orthopaedics.

Key messages
• This study sets out a five-stage framework

which spans from concept outline to post-
deployment model surveillance.

• Key checkpoints to progression through
each of the stages are highlighted, along
with associated reporting guidelines.

Strengths and limitations
• Strength: Based on the established IDEAL

principles governing the introduction of
surgical innovation.

• Limitation: Widespread dissemination and
uptake of the framework within AI
research is required to realistically effect
any potential clinical impact.

Introduction
Artificial intelligence (AI) has previously
been highlighted as a potential innovation
to embrace in trauma and orthopaedics,
although caution behind the scale and scope
of adoption has been recommended.1 With
the increasing availability and use of large-
scale data repositories, it is likely that the use
of AI, with its associated abilities to ana-
lyze substantial quantities of information and
include previously unavailable data sources
(for example, digital images and unstructured
clinical text information), will play a large role
in future healthcare advancements.2

As potential applications of AI to
healthcare expand, there is a clear need for
key stakeholders (researchers, clinical staff,
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industry partners, policymakers, and patients) to understand
the pipeline from development of AI algorithms to integration
into clinical practice. It is important to have clear guidance
on what good evidence looks like at each stage of develop-
ment, to ensure informed appraisal of emerging evidence and
associated claims of benefit. Currently there are hundreds, if
not thousands, of developed AI tools that focus on clinical
applications, but very few that progress to inform clinical
practice.3,4

A number of AI reporting guidelines have been
developed (e.g. CONSORT-AI, DECIDE-AI, and TRIPOD-AI), and
provide a useful framework to support researchers to produce
manuscripts that are of sufficient rigour for stakeholders to
understand the potential application of these models.5-8 The
vast majority of AI algorithms for use in healthcare are,
however, produced without reference to any clear framework
to inform potential users of their readiness (or not) for
deployment into a useful clinical application. This is perhaps
one of the major reasons why we continue to see limited
clinical benefit from AI, despite its potential to transform the
way in which healthcare operates at all points in the patient
journey.9,10

Such guidance exists around other related areas, such
as the Medical Research Council (MRC) framework for complex
interventions11 and the mobile health (mHealth) evidence
reporting and assessment (mERA)12 checklists, but these are
not specific to AI and therefore potentially miss key aspects
unique to healthcare innovation in this field. Other published
advice relates to specific fields of AI application,13 or qual-
ity assurance,14 and do not depict a clear pipeline of the
necessary journey from model development to safe use in
clinical practice that are applicable to all domains of AI
implementation within a healthcare setting. Governmental
bodies, including the USA Food and Drug Administration
(FDA) and NHS England,15,16 have both highlighted the clear
need for further development around regulations for AI and

digital health. A robust evidence pipeline is likely to play
an integral part of that regulatory process, similar to current
medical device and drug developments.

Having a recognized structured pathway for AI
deployment (with clear stages of development and associated
evidence of benefit required at each stage) would also provide
key indicators for safety, and reduce the real danger associ-
ated with the potential use of improperly tested AI models
within a clinical setting. Perhaps one of the best examples
of this is the AI early sepsis prediction model embedded
within the EPIC electronic health record system. Researchers
found that even though the model was widely accepted, it still
failed to identify a significant number of patients with sepsis
during external validation, suggesting a lack of robustness
and generalization capabilities of this (or a similar) model. The
algorithm also set off a high number of false positive warnings
for potential sepsis identification that may have led to “alert
fatigue”.17 AI models have historically lacked proper cohort
representation during development, leading to real-world
issues with generalizability and subsequently raising ethical
concerns related to poor model performance across different
ethnic, racial, and sex categories.18,19

The IDEAL framework provides a well-established and
comprehensive pathway from innovation to potential clinical
adoption that has been used for several years to guide
surgical innovation.20 This has included applications in the
field of trauma and orthopaedics, such as development and
clinical testing of the X-Bolt Dynamic Hip Plating System
culminating in a large-scale randomized controlled trial (RCT)
assessment.21-23 IDEAL forms a five-stage (six including the
pre-clinical stage 0) concept of appropriate clinical integration
and underpinning research for surgical therapy innovation:
Stage 0 – Theoretical or in vitro testing of clinical utility and
risk; Stage 1 – Proof of concept (In-vivo testing); Stage 2a –
Development (Prospective Case-series); Stage 2b – Exploration
(Prospective Cohort or feasibility RCT); Stage 3 – Assessment

Fig. 1
The Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework. A proposed application of the IDEAL principles detailed by McCulloch et
al.20
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(Randomized Controlled Trial); and Stage 4 – Long term study
(Surveillance to detect rare / late outcomes).

Although specific to surgical innovation, the IDEAL
framework provides a valid and rigorous structure which
provides key principles to inform the development of
frameworks for other forms of innovation across the wider
clinical spectrum, including AI, and which could be used
in conjunction with other standards such as the BS 30440
Validation framework for the use of AI within healthcare.24

Successful use of the IDEAL framework as a tool for
separate subscale development has already been demonstra-
ted in the area of device innovation, culminating in the
proposed IDEAL-D framework that provides guidance for the
evaluation and regulation of medical devices.25

A proposed framework for AI
A framework to guide the development and evaluation of AI
applications, which builds on the IDEAL principles together
with insights from other validated AI quality assurance
standards, has been proposed – the Clinical Practice Integra-
tion of Artificial Intelligence (CPI-AI) framework. As highlighted
in Figure 1, it is important to understand that development
is an iterative process, and that there may be natural flow
forwards and backwards between stages to manage potential
bias or model drift. Figure 2 provides a list of progression
criteria to aid further understanding of suitability for progres-
sion of research through the CPI-AI stages.

Stage 0 – Concept outline
As with the IDEAL framework, this stage involves concep-
tualizing an AI algorithm with input from a diverse team
of AI experts, clinicians, patients, and policymakers. This
would involve evaluating relevant background literature and
assessing the theoretical risks and benefits of the idea,
including technological considerations such as infrastructure,
interoperability, and data security. Consideration would also
be given to feasibility and scope, potential user groups and
output format, as well as ethics, transparency, and interpret-
ability, as these will greatly influence the later stages of
development. Generative AI may be used to aid concept
development, but should include appropriate consideration
to any later potential copyright implications.

Stage 1 – Algorithm development
This is currently by far the most frequently examined area of
AI application to healthcare. In this stage, the AI algorithm is
developed and initially tested at a basic level as a proof of
concept. This will typically involve a single/multicentre study
whereby a single large, or multiple smaller, dataset(s) is/are
used to develop the AI tool.

AI-related reporting checklists for IDEAL Stage 1 are
available and would be used to ensure that all key rele-
vant information is contained within any publication of such
work, for example STARD-AI (for diagnostic studies)26 or the
TRIPOD+AI guidance (for prediction modelling).8 At this stage,
no strong references would be made to the potential clinical
applicability of any developed AI algorithms without more
detailed evaluation conducted as with the later stages of the

Fig. 2
Clinical Practice Integration of Artificial Intelligence (CPI-AI) progression criteria. A guide to aid determination of research integrity and suitability for
stage progression.
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IDEAL framework. Given the high-stakes environment of AI
healthcare applications, it would be anticipated that substan-
tial attention would be paid to explainability and interpretabil-
ity of the developed model. Active efforts would be made to
confirm the results and performance of those early AI models
to other available datasets.

An example of a CPI-AI stage 1 concept would be
the development of an AI-based clinical prediction model, to
determine risk of nonunion with nonoperative management
of a clavicle fracture based on radiograph images at the time
of injury. It would be anticipated that this would use local/
national imaging databases with a ground truth available to
determine who achieved union or not. Sample characteristics,
as well as key metrics such as accuracy, recall, precision, f1
score, and specificity, would be detailed. Consideration would
be given to how best to move towards CPI-AI Stage 2a.

Stage 2a – External validation
The next stage of algorithm development requires testing
outside the dataset where the algorithm was originally trained,
a process known as external validation. This is currently
lacking in many studies, but is an essential part of appropriate
use to ensure that the algorithm remains suitably effective
within different populations.27 Multiple external validations
are likely needed to account for demographic, clinical, and
healthcare infrastructure variability. This external validation
is in addition to the common AI development practice that
involves splitting a dataset into train, validation, and test sets.
The external validation will involve a completely separate
dataset that will describe a different population and/or clinical
setting.

This stage would likely highlight the need to tune
certain parts of the model to better calibrate it within this
wider set of patients and/or a new clinical infrastructure. This
work is essential to ensuring fairness across patient groups
and minimizing any bias present in the initial training data.
Further testing would then be performed to demonstrate
improved performance in the wider dataset. Again, reporting
checklists such as those highlighted above (e.g. TRIPOD-AI
and STARD-AI) would be used to ensure that this process
is accurately documented and transparent. Reporting at this
stage should also include calibration across different patient
groups where appropriate, for example sex, age, or disease
severity. The level of similarities and differences between the
original and external validation cohorts should be highlighted.

An example of a CPI-AI Stage 2a for our clavicle fracture
project would be testing of the developed algorithm on
a different (multiple) local/national imaging database, with
suitable tuning to ensure that the algorithm performs well on
a wider subset of patients.

Stage 2b – Prospective assessment
Once confirmed that the algorithm is suitable for wider
application, the project would move forwards to assess the
feasibility of potential clinical practice implementation. This
would be done in a prospective fashion with assessment
of the intervention in a ‘live’ setting. This would include
consideration of how use of the algorithm impacts on clinical
decision-making, with initial evaluation performed as a ‘silent
reading’ phase, so that impact on patient care is not real-
ised while this process occurs. Attention would be placed on

improving upon the explainability of the AI models (incorpo-
rating both local (individual AI outputs) and global (general
population level) explainability methods), while tuning it for
enhanced performance.

As per the DECIDE-AI reporting checklist,6 which has
been developed specifically to address this type of early-stage
clinical deployment, this stage would focus on three key
areas: Clinical Utility, Safety, and Human Factors. Potential
cost implications would also be important within financially
constrained healthcare settings, which has typically been
lacking previously. It would also be important to ensure
that the interface is compliant with the necessary regula-
tions regarding the processing and potential storage of
patient data. Again, further updating of the model may be
required following this prospective assessment and stake-
holder feedback with re-testing and fluidity within Stage 2.

An example of a CPI-AI Stage 2b for our clavicle project
would be initial ‘silent reading’ of the algorithm output,
followed by live use in the fracture clinic to aid decision-
making regarding the potential risks of nonunion and help
determine optimal treatment strategy on a case-by-case basis.
Saliency maps could be used for local explainability, to help
demonstrate the regional importance of included images in
algorithmic outcomes to reassure clinical teams and patients
of the correct rationale for decision-making.

Stage 3 – Clinical impact assessment (RCT)
Similar to any other healthcare intervention, AI technologies
require formal assessment of their impact on clinical prac-
tice, utilizing the most robust and unbiased methodology
available. Typically, this would be a large-scale intervention
in the form of a multicentre RCT, comparing the safety
and outcomes of the use of the algorithm against current
alternative best practice methodology. The effects on the
wider system would also need to be assessed.

Potential outcomes examined would likely differ
dependent on the type of the AI algorithm and its inten-
ded use, for example with the clavicle project example the
primary outcome could be the proportion of patients who
successfully avoided a nonunion and their linked patient-
reported outcome measure (PROM) data over time (as one
would anticipate that successful avoidance of nonunion would
improve PROMs, particularly in the earlier stages of evalu-
ation). Cost-effectiveness analyses would likely also be an
important part of any assessment, balancing the cost of AI
implementation and monitoring versus the potential savings
from avoidance of unnecessary surgery.

Reporting checklists for a potential CPI-AI Stage 3
would include the CONSORT-AI statement,5 as well as the
SPIRIT-AI checklist for RCT protocol design and publication.28

Stage 4 – Implementation and model surveillance
Following successful RCT analysis and confirmation of clinical
and cost-effectiveness, implementation of the model is
performed. Flexibility of the AI intervention may be required
to widen adoption and should be evaluated iteratively.
Supporting sustainability has previously been identified as a
key driver of long-term behavioural change.29

It is also essential that any fully deployed AI model
undergoes serial evaluation (through continued assessment
of relative performance metric attainment) to confirm its
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execution is maintained over time. AI models are at particu-
lar risk of two major issues related to changes in how they
function over time: concept drift and data drift.30

Concept drift relates to changes in how one labels data
and interprets the algorithm findings. For example, clinicians
may change the time at which a nonunion is declared to
have occurred, or decide that painless radiological nonunions
should be classified in the healed category.

Data drift is the more common concern, where the
characteristics of the inputted data change over time. One
such example would be an ageing population presenting
different population demographics, or perhaps updated X-ray
technology that changes the quality of the images assessed by
the algorithm.

If model drift is identified, then retraining, and
re-tuning, or adapting the model would likely be required
to ensure adequate ongoing performance and maintenance
of cost-effectiveness. Such techniques are currently under
development and could be used in this setting, but further
scrutiny is required for the problem in hand.31

Conclusion
AI algorithms are complex medical interventions and need
to be appropriately evaluated as such. Our suggested CPI-AI
framework would allow a clear pathway from development
to clinical practice application of AI models in trauma and
orthopaedics, with stage gates to ensure appropriate onward
development of only effective algorithms – maximizing the
potential that AI has to provide a more personalized and
precise healthcare service.
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