The presence of pluripotent mesenchymal cells in the periosteum along with the growth factors produced or released following injury provides this tissue with an important role in bone healing. Utilising this property, vascularised periosteal flaps may increase the union rates in recalcitrant atrophic long bone non-union. The novel chimeric fibula-periosteal flap utilises the periosteum raised on an independent periosteal vessel, thus allowing the periosteum to be inset freely around the osteotomy site, improving bone biology. Ten patients, with established non-union, underwent fibula-periosteal chimeric flaps (2016–2022) at the Canniesburn Plastic Surgery Unit, UK. Preoperative CT angiography was performed to identify the periosteal branches. A case-control approach was used. Patients acted as their own controls, which obviated patient specific risks for non-union. One osteotomy site was covered by the chimeric periosteal flap and one without. In two patients both the osteotomies were covered using a long periosteal flap.Introduction
Materials & Methods
To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA). This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.Aims
Methods
Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups.Aims
Methods
We report on the 5 year results of a randomized study comparing TKR performed using conventional instrumentation versus electromagnetic computer-assisted surgery. This study analysed patient reported outcome measures (PROMs) at 5 years utilising the American Knee Society Score (AKSS), Oxford Knee Score (OKS), the Short Form 36 score and range of motion (ROM). Of the 200 patients enrolled 125 completed 5 year follow up, 62 in the navigated group and 63 in the conventional group. There were 28 deceased patients, 29 withdrawals and 16 lost to follow-up. There was improvement in clinical function in most PROMs from 1-5 year follow up across both groups. OKS improved from a mean of 26.6 (12–55) to 35.1 (5–48). AKSS increased from 75.3 (0–100) to 78.4 (−10–100), SF36 from 58.9 (2.5–100) to 53.2 (0–100). ROM improved by an average 7 degrees from 110 degrees to 117 degrees (80–135). There was no statistically significant difference in PROMs between the groups at 5 years. Patients undergoing revision surgery were identified from the dataset and global PACS. There were no revisions within 5 years in the navigated group and 3 revisions in the conventional group, two for infection and one for mid-flexion instability, giving an all cause revision rate of 3.06% at 5 years for this group. There appears to be no significant advantage in clinical function for patients undergoing TKR for OA of the knee with electromagnetic navigation when compared to conventional techniques. There may be an advantage in reducing early revision rates using this technology.
Limb length deficiency, secondary to trauma or infection, is a common reason for referral to our tertiary service. After experiencing troubles with the Intramedullary Skeletal Kinetic Distractor (ISKD), we changed implant to the magnet operated Precice nail. We evaluated the safety and reliability of this novel device and compared it to our early ISKD results. To minimise variables, we selected femurs only. In total, we reviewed medical and radiographic records of 20 cases (8 ISKD, 12 Precise) from 2010–2015. At each postoperative visit, the accuracy and precision of distraction and complications were recorded. Accuracy reflected how close the measured lengthening was to the prescribed distraction at each postoperative visit. Precision reflected how close the repeated measurements were to each other over the course of total lengthening period. No patients were lost to follow-up (1–3.5 years). With the Precice nail (2012–2015), 11/12 were male and 10/12 were caused by trauma. The mean age was 34. Mean total lengthening was 38mm (range, 29–53mm), with an accuracy of 98percnt; and precision of 92percnt;. All patients achieved target lengthening at a rate of 1mm lengthening per day. In one case, the Precice nail fractured and this was revised successfully. With the ISKD group (2010–2012), 8/8 had complications (magnet jamming, nail breakage, equinus contractures and claw toes), with 25percnt; achieving accurate lengthening and precision of 38percnt;. Our results so far have justified our change in implant choice and, in our experience, support the Precice nail as being safe and precise.
This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing robotic arm-assisted unicompartmental knee arthroplasty (UKA) for medial compartment osteoarthritis of the knee with manual UKA performed using traditional surgical jigs. This follows reporting of the primary outcomes of implant accuracy and gait analysis that showed significant advantages in the robotic arm-assisted group. A total of 139 patients were recruited from a single centre. Patients were randomised to receive either a manual UKA implanted with the aid of traditional surgical jigs, or a UKA implanted with the aid of a tactile guided robotic arm-assisted system. Outcome measures included the American Knee Society Score (AKSS), Oxford Knee Score (OKS), Forgotten Joint Score, Hospital Anxiety Depression Scale, University of California at Los Angeles (UCLA) activity scale, Short Form-12, Pain Catastrophising Scale, somatic disease (Primary Care Evaluation of Mental Disorders Score), Pain visual analogue scale, analgesic use, patient satisfaction, complications relating to surgery, 90-day pain diaries and the requirement for revision surgery.Objectives
Methods
Unicompartmental knee arthroplasty (UKA) has been gaining popularity in recent years due to its perceived benefits over total knee arthroplasty (TKA), such as greater bone preservation, reduced operating-room time, better post-operative range of motion and improved gait. However there have been failures associated with UKA caused by misalignment of the implants that have lead to revisions. To improve the implant alignment a robotic guidance system called the RIO Robotic Arm has been developed by MAKO Surgical Corp (Ft. Lauderdale, FL), which is designed to give improved accuracy compared to traditional UKA using cutting jigs and other manual instrumentation. The University of Strathclyde in association with Glasgow Royal Infirmary has undertaken the first independent RCT trial of the MAKO system against the Oxford unicompartmental knee arthroplasty – a conventional UKA used in the UK. Motion analysis was used in order to obtain a quantitative assessment of their movement. The results from a total of 51 patients (23 MAKO, 28 Oxford) that underwent a one year post-operative biomechanical assessment were investigated. Motion analysis showed that during level walking the MAKO group achieved a higher knee excursion during the highest flexion portion of the weight bearing stage of the gait cycle (foot-strike to mid-stance) compared to the Oxford group (18.6° and 15.8° respectively). This difference was statistically significant (p-value = 0.03). Other knee excursion values that were compared were from mid-stance to terminal stance, and overall knee flexion. No statistically significant differences were seen in either of these measurements. A subsequent comparison of both MAKO and Oxford groups with a matched normal cohort (50 patients), demonstrated that there wasn't a statistically significant difference between the MAKO group and the normal knees during mean knee excursion from foot-strike to mid-stance (18.6° and 19.5° respectively, p-value 0.36). However the Oxford group, with a lower knee excursion was found to be significantly different to our normal control group (15.8° and 19.5° respectively, p-value < 0.001). This suggests that the robotic-assisted knees behaved more similarly to normal gait during this phase of the gait cycle than those of the conventional group. While significant differences in gait were found between the Oxford and MAKO groups, further work is required to determine if this results in improved knee function that is perceptible to the patient.
Total knee arthroplasty (TKA) has been established as a successful procedure for relieving pain and improving function in patients suffering from severe knee osteoarthritis for several decades now. It involves removing bone from both the medial and lateral compartments of the knee and sacrificing one or both of the cruciate ligaments. This in turn is likely to have an impact on the patients' functional outcome. In subjects where only one compartment of the knee joint is affected with osteoarthritis then unicondylar knee arthroplasty (UKA) has been proposed as an alternative procedure to TKA. This operation preserves the cruciate ligaments and removes bone only from the affected side of the joint. As a result there is the possibility of an improved functional outcome post surgery. UKA has been associated with faster recovery, good functional outcome in terms of range of motion and it is bone sparing compared to TKA. However, the biggest obstacle to UKA success is the high failure rates. The aim of this study was to compare the functional outcome of computer navigated TKA (n=60) and UKA (n=42) patients 12 month post operation using flexible electrogoniometry. Flexible electrogoniometry was used to investigate knee joint kinematics during gait, slopes walking, stair negotiation, and when using standard and low chairs. Maximum, minimum and excursion knee joint angles were calculated for each task. The biomechanical assessment showed statistically significant improvements in the knee kinematics in terms of maximum ( Therefore, UKA patients were showed to have a significantly better functional outcome in terms of the maximum knee joint angle during daily tasks. A limitation of this study is that it compares two cohorts rather than two randomised groups. It is expected that UKA patients will have a better functional outcome. Our results suggest that for patients with less severe knee osteoarthritis, UKA may offer a better functional outcome than the more common surgical option of TKA. The recent advancements in computer assisted and robotic assisted knee arthroplasty has the possibility to improve the accuracy of UKA and therefore led to the increase in confidence and in usage in a procedure which has the potential to give patients a superior functional outcome.
A retrospective analysis was carried out to determine the influence of pre-existing spinal pathology on the outcome of Total Knee Replacement surgery. Data was collected from 345 patients who had undergone Total Knee Replacement, at four centres in the UK, between 2000 and 2007. Oxford Knee Scores (OKS), American Knee Society Scores (AKSS) and SF-12 questionnaires were recorded prospectively. Data was collected pre-operatively and then post-operatively at 3 months, 1 year and 2 years. Patients were divided into those with (n=40) and without a history of low back pain (n=305). In addition to determining the influence of low back pain on outcome after Total Knee Replacement we also examined the influence of concomitant hip and ankle pathology in the same cohort of patients. OKS scores were significantly worse for patients with symptomatic low back pain at 3 (p=0.05), 12 (p=0.009) and 24 months (p=0.039) following surgery. SF-12 physical scores followed a comparable pattern with significance demonstrated at 3 (p=0.038), 12 (p=0.0002) and 24 months (p=0.016). AKSS followed a similar pattern, but significance was only reached at 1 year (p=0.013). The mental component of the SF-12 measure demonstrated a significant improvement in patients' mental health post-operatively for patients with no history of low back pain. In contrast patients with low back pain showed no improvement in mental health scores post-operatively. In contrast to low back pain, hip and ankle pathology had no statistically significant detrimental effect on the outcome of Total Knee Replacement surgery. This study demonstrates that low back pain significantly affects the functional outcome after Total Knee Replacement surgery and that patients with low back pain show no improvement in mental health post-operatively.
Unicompartmental knee arthroplasty (UKA) has been gaining popularity in recent years due to its perceived benefits over total knee replacements, such as greater bone preservation, reduced operating-room time, better postoperative range of motion and improved gait. However there have been failures associated with UKA caused by misalignment of the implants. To improve the implant alignment a robotic guidance system called the RIO Robotic Arm has been developed by MAKO Surgical Corp (Ft. Lauderdale, FL). This robotic system provides real-time tactile feedback to the surgeon during bone cutting, designed to give improved accuracy compared to traditional UKA using cutting jigs and other manual instrumentation. The University of Strathclyde in association with Glasgow Royal Infirmary has undertaken the first independent Randomised Control Trial (RCT) of the MAKO system against the Oxford UKA – a conventional UKA used in the UK. The trial involves 139 patients across the two groups. At present the outcomes have been evaluated for 30 patients. 14 have received the MAKO unicompartmental knee arthroplasty and 16 the Oxford UKA. Both groups were seen 1 year post-operatively. Kinematic data was collected while subjects completed level walking using a Vicon Nexus motion analysis system. Three-dimensional hip, knee and ankle angles were compared between the two arthroplasty groups. Our initial findings indicate that hip and ankle angles show no significant statistical difference, however there is a significant difference (p < 0.05) in the knee angles during the stance phase of gait. Data shows higher angles achieved by the MAKO group over the Oxford. It would appear from our early findings that the MAKO RIO procedure with Restoris implants gives at least comparable functional outcome with the conventional Oxford system and may prove once our full sample is available for analysis to produce better stance phase kinematics with a more active gait pattern than the conventional Oxford procedure. Further work includes analysing the data obtained from the patients in a number of other activities. These include a full biomechanical analysis of ascending and descending a flight of stairs, sit to stand and a deep knee lunge. The high demand/high flexion tasks in particular may reveal if there's an advantage to using the MAKO procedure over the Oxford. If there is a direct correlation between alignment and patient function then this effect could be more significant in the more demanding patient tasks.
Total knee arthroplasty (TKA) is an established and successful operation. However patient satisfaction rates vary from 81 to 89% 1,2,3. Pain following TKA is a significant factor in patient dissatisfaction 1. Many causes for pain following total knee arthroplasty have been identified 4 but rates of unexplained pain vary from 4 to 13.1% 5,6. Recently computerised tomography (CT) has been used to assess the rotational profile of both the tibial and femoral components in painful TKA We reviewed 57 patients with an unexplained painful following TKA and compared these to a matched control group of 60 patients with TKA. Datum gathered from case notes and radiographs using a prospective database to identify patients. The CT information recorded was limb alignment, tibial component rotation, and femoral component rotation and combined rotation. The two matched cohorts of patients had similar demographics. A significant difference in tibial, femoral and combined component rotation was identified between the groups. The following mean rotations were identified for the painful and control groups respectively. Tibial rotation was 3.46 degrees internal rotation (IR) compared to 2.50 degrees external rotation (ER)(p=0.001). Femoral rotation was 2.30 IR compared to 0.36 ER(p=0.02). Combined rotation was 7.08 IR compared to 2.85 ER(p=0.001). This is the largest study presently in the literature. We have identified significant internal rotation in a patient cohort with unexplained painful TKA when compared to a matched control group. Internal rotation of the tibial component, femoral component and combined rotation was identified as a factor in unexplained pain following TKA.
Total knee arthroplasty is an established and successful operation. In up to 13% of patients who undergo total knee arthroplasty continue to complain of pain. Recently computerised tomography (CT) has been used to assess the rotational profile of both the tibial and femoral components in painful total knee arthroplasty. We reviewed 56 painful total knee replacements and compared these to 56 matched patients with pain free total knee replacements. Patients with infection, aseptic loosening, revision arthroplasties and gross coronal malalignment were excluded. Datum gathered from case notes and radiographs using a prospective orthopaedic database to identify patients. The age, sex, preoperative and postoperative Oxford scores, visual analogue scores and treatments recorded. The CT information recorded was limb alignment, tibial component rotation, femoral component rotation and combined rotation. The two cohorts of patients had similar demographics. The mean limb alignments were 1.7 degrees varus and 0.01 degrees valgus in the painful and control groups respectively. A significant difference in tibial component rotation was identified between the groups with 3.2 degrees of internal rotation in the painful group compared to 0.5 degrees of external rotation in the control group (p=0.001). A significant difference in femoral component rotation was identified between the groups with 3.8 degrees of internal rotation in the painful group compared to 1.1 degrees of external rotation in the control group (p=0.001). A significant difference in the combined component rotation was identified between the groups with 6.8 degrees of internal rotation in the painful group compared to 1.7 degrees of external rotation in the control group (p=0.001). We have identified significant internal rotation in a patient cohort with painful total knee arthroplasty when compared to a control group with internal rotation of the tibial component, femoral component and combined rotation. This is the largest comparison series currently in the literature.
Scaphoid injuries remain a challenge in both diagnosis and subsequent management. Untreated scaphoid non-union leads to inevitable osteoarthritis. Non-unions are picked up via an established management pathway in out trust and treated surgically with a standardised technique of non-vascularised bone grafting and retrograde screw fixation. Patients that underwent primary screw fixation and grafting for scaphoid non-union between 2004-2008 were reviewed. These patients were followed up clinically and radiologically. They were assessed for time to union, complications, DASH score, patient satisfaction and return to work. In addition comparison was made between the use of Herbert screw and Twinfix screw fixation and between tricortical iliac crest graft and corticocancellous distal radial bone graft. Forty-two consecutive patients underwent surgery of which 35 (83%) were available for follow up. Mean follow up was 39 months (range 13-72). 31 (89%) patients had gone on to radiological union. Of those united the mean DASH score was 11. Mean time to union was 4.4 months (range 2-15 95% CI 3.3 – 5.5). 95% of patients were satisfied with their operation and would recommend it to a friend in the same situation. No significant difference in outcomes were identified between Herbert screw and Twinfix screw fixation or between iliac crest or distal radial bone grafting techniques. This study has shown encouraging results for an established protocol for management of scaphoid non-union. Outcomes are as a good as any published comparable series in the literature and provide further support to the use of this technique.
Last minute cancellations of operations are a major waste of NHS resources. This study identifies the number of late cancellations at our elective orthopaedic centre, the reasons for them, the costs involved, and whether they are avoidable. Last minute cancellations of operations in a 7-month period from January to July 2009 were examined. 172 cases out of 3330 scheduled operations were cancelled at the last minute (5.2%). Significantly more cancellations occurred during the winter months due to seasonal illness. The commonest causes for cancellation in descending order of frequency were patient unfit/unwell (n=76, 44.2%), lack of theatre time (n=32, 18.6%), patient self cancelled/DNA (n=20, 11.6%), staff unavailable or sick (n=9, 5.2%), theatre or equipment problem (n=8, 4.7%), operation no longer required (n=8, 4.7%), administrative error (n=7, 4.1%) or no bed available (n=5, 2.9%). In 7 out of the 172 cancelled cases (4.1%) no cause was identified. 59.7% of the cases were potentially avoidable. 3.2% of Patients seen in the specialist pre-operative anaesthetic clinic (POAC) were cancelled at the last minute for being unfit or unwell, compared to 2.2% seen in the routine nurse led clinic. Last minute cancellations cost the hospital over £700,000 in 7 months.
The technique of bone transport with a conventional Ilizarov external fixator is the current standard means of dealing with segmental bone defects not amenable to bone grafting. Problems with control of the distraction of regenerate bone frequently compromises treatment resulting in secondary deformity. Accurate docking of the defect bone ends is also complex to manage with the Ilizarov apparatus, corrections being possible in only one plane at a time (serial processing). The Taylor Spatial external fixator (TSF), (Smith and Nephew, Memphis, Tennessee), is a modified Ilizarov fixator with six telescopic struts that are free to rotate at their connection points to the proximal and distal rings. This combination forms a Stewart Gough platform similar to that used in aircraft simulators. By adjusting only strut lengths, and applying Chasles theorem, one ring can be repositioned with respect to the other. Therefore with the aid of computer software, six axis deformities can be corrected simultaneously (parallel processing). We have used this device over the past 2 years in patients with segmental bone defects of the tibia in a stacked mode of application – a three ring construct with six struts between each pair of rings – to allow simultaneous accurately controlled distraction osteogenesis in one segment and independently controlled closure and compression at the docking site. We present the results of 19 stacked Taylor Spatial frames in 19 patients treated with bone transport in the tibia. The diagnosis was bone resection for infected non union in fourteen, tumour resection in three and acute non infected bone loss secondary to trauma in two. The average age was 34.9 years, (range 10 to 69). Transport ranged from 4 to 12 cm. We used a distraction rate of 0.75mm/day and a comparable compression rate for closure of the defect. At the distraction site, angulation was controlled to within 1degree in any plane and translation to within 1mm in any direction, including length, allowing perfect alignment of the regenerate in all 19 cases. Regenerate quality was uniformly excellent. Superior control of the docking site compared with the Ilizarov fixator was consistently possible and the union rate was 100%. We observed no major complications of treatment. Minor complications included pin and wire infection and breakage all of which were treatable by simple measures with no long term sequelae. In summary our experience with the stacked TSF for bone transport has shown it to be a highly reliable tool. We have achieved perfect control of regenerate bone in all axes and improved clinical outcomes for these complex problems.
Treatment modalities included internal fixation (80%; 76% of displaced fractures), hemiarthroplasty (17%) and total hip replacement (3%). Follow-up was for a mean 3.67 years (range 0.01–5.96 years). Three patients died (3.4%). Of the displaced fractures treated with fixation, five patients developed avascular necrosis (8.9%); two of these were managed conservatively. Seven patients (12.5%) required a total of nine revision procedures. No failures occurred in other initial treatment modalities or undisplaced fractures. There was no significant relationship between pre-operative duration and subsequent avascular necrosis or need for revision surgery.