Understanding the long-term effects of total knee arthroplasty (TKA) on joint kinematics is vital to assess the success of the implant design and surgical procedure. However, while Two fresh-frozen lower limbs from a single donor (male, age: 83yr, ht: 1.83m, wt: 86kg), who had undergone bilateral TKA (Genesis II, Smith&Nephew, Memphis, USA) 19 years prior to his demise, were obtained following ethical approval from the KU Leuven institutional board. The specimens were imaged using computed tomography (CT) and tested in a validated knee simulator3 replicating active squatting and varus-valgus laxity tests. Tibiofemoral kinematics were recorded using an optical motion capture system and compared to various studies in the literature using the same implant – experimental studies based on cadaveric specimens (CAD)1,4 and an artificial specimen (ART)5, and a computational study (COM)6. Maximum tibial abduction during laxity tests for the left leg (3.54°) was comparable to CAD (3.30°), while the right leg exhibited much larger joint laxity (8.52°). Both specimens exhibited valgus throughout squatting (left=2.03±0.57°, right=5.81±0.19°), with the change in tibial abduction over the range of flexion (left=1.89°, right=0.64°) comparable to literature (CAD=1.28°, COM=2.43°). The left leg was externally rotated (8.00±0.69°), while the right leg internally rotated (−15.35±1.50°), throughout squatting, with the change in tibial rotation over the range of flexion (left=2.61°, right=4.79°) comparable to literature (CAD=5.52°, COM=4.15°). Change in the femoral anteroposterior translation over the range of flexion during squatting for both specimens (left=14.88mm, right=6.76mm) was also comparable to literature (ART=13.40mm, COM=20.20mm). Although TKA was reportedly performed at the same time on both legs of the donor by the same surgeon, there was a stark difference in their post-operative joint kinematics. A larger extent of intraoperative collateral ligament release could be one of the potential reasons for higher post-operative joint laxity in the right leg. Relative changes in post-operative tibiofemoral kinematics over the range of squatting were similar to those reported in the literature. However, differences between absolute magnitudes of joint kinematics obtained in this study and findings from the literature could be attributed to different surgeons performing TKA, with presumable variations in alignment techniques and/or patient specific instrumentation, and the slightly dissimilar ranges of knee flexion during squatting. In conclusion, long-term kinematic effects of TKA quantified using
Orthopaedic training sessions, vital for surgeons to understand post-operative joint function, are primarily based on passive and subjective joint assessment. However, cadaveric knee simulators, commonly used in orthopaedic research,1 could potentially benefit surgical training by providing quantitative joint assessment for active functional motions. The integration of cadaveric simulators in orthopaedic training was explored with recipients of the European Knee Society Arthroplasty Travelling Fellowship visiting our institution in 2018 and 2019. The aim of the study was to introduce the fellows to the knee joint simulator to quantify the surgeon-specific impact of total knee arthroplasty (TKA) on the dynamic joint behaviour, thereby identifying potential correlations between surgical competence and post-operative biomechanical parameters. Eight fellows were assigned a fresh-frozen lower limb each to plan and perform posterior-stabilised TKA using MRI-based patient-specific instrumentation. Surgical competence was adjudged using the Objective Structured Assessment of Technical Skills (OSATS) adapted for TKA.2 All fellows participated in the OSATS scores ranged from 79.6% to 100% (mean=93.1, SD=7.7). A negative correlation was observed between surgical competence and change in post-operative tibial kinematics over the entire range of motion during passive flexion – OSATS score vs. change in tibial abduction (r=−0.87; p=0.003), OSATS score vs. change in tibial rotation (r=−0.76; p=0.02). When compared to the native condition, post-operative tibial internal rotation was higher during passive flexion (p<0.05), but lower during squatting (p<0.033). Post-operative joint stiffness was greater in extension than in flexion, without any correlation with surgical competence. Although trained at different institutions, all fellows followed certain standard intraoperative guidelines during TKA, such as achieving neutral tibial abduction and avoiding internal tibial rotation,4 albeit at a static knee flexion angle. However, post-operative joint kinematics for dynamic motions revealed a strong correlation with surgical competence, i.e. kinematic variability over the range of passive flexion post-TKA was lower for more skilful surgeons. Moreover, actively loaded motions exhibited stark differences in post-operative kinematics as compared to those observed in passive motions. In conclusion, the inclusion of cadaveric simulators replicating functional joint motions could help quantify training paradigms, thereby enhancing traditional orthopaedic training, as was also the unanimous opinion of all participating fellows in their positive feedback.
Unicompartmental knee arthroplasty (UKA) currently experiences increased popularity. It is usually assumed that UKA shows kinematic features closer to the natural knee than total knee arthroplasty (TKA). Especially in younger patients more natural knee function and faster recovery have helped to increase the popularity of UKA. Another leading reason for the popularity of UKA is the ability to preserve the remaining healthy tissues in the knee, which is not always possible in TKA. Many biomechanical questions remain, however, with respect to this type of replacement. 25% of knees with medial compartment osteoarthritis also have a deficient anterior cruciate ligament [1]. In current clinical practice, medial UKA would be contraindicated in these patients. Our hypothesis is that kinematics after UKA in combination with ACL reconstruction should allow to restore joint function close to the native knee joint. This is clinically relevant, because functional benefits for medial UKA should especially be attractive to the young and active patient. Six fresh frozen full leg cadaver specimens were prepared to be mounted in a kinematic rig (Figure 1) with six degrees of freedom for the knee joint. Three motion patterns were applied: passive flexion-extension, open chain extension, and squatting. These motion patterns were performed in four situations for each specimen: with the native knee; after implantation of a medial UKA (Figure 2); next after cutting the ACL and finally after reconstruction of the ACL. During the loaded motions, quadriceps and hamstrings muscle forces were applied. Infrared cameras continuously recorded the trajectories of marker frames rigidly attached to femur, tibia and patella. Prior computer tomography allowed identification of coordinate frames of the bones and calculations of anatomical rotations and translations. Strains in the collateral ligaments were calculated from insertion site distances.Introduction
Materials and Methods
Passive knee stability is provided by the soft tissue envelope which resists abnormal motion. There is a consensus amongst orthopedic surgeons that a good outcome in TKA requires equal tension in the medial and the lateral compartment of the knee joint, as well as equal tension in the flexion and extension gap. The purpose of this study was to quantify the ligament laxity in the normal non-arthritic knee before and after standard posterior-stabilized total knee arthroplasty (PS-TKA). We hypothesized that the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) will show minimal changes in length when measured directly by extensometers in the native human knee during varus/valgus laxity testing. We also hypothesized that due to differences in material properties and surface geometry, native laxity is difficult to be completely reconstructed using contemporary types of PS-TKA. A total of 6 specimens were used to perform this This study enabled a very precise measurement of varus and valgus laxity as compared with the clinical assessment which is a subjective measure. The strains in both ligaments in the replaced knee were different from those in the native knee. Both ligaments were stretched in extension, in flexion the MCL tends to relax and the LCL remains tight. Fig. 2 Initial and maximal strain values in the MCL during valgus and varus laxity testing in different flexion angles. a: intact knee, b: replaced knee. and Fig. 3 Initial and maximal strain values in the LCL during valgus and varus laxity testing indifferent flexion angles. a: intact knee, b: replaced knee.Methods:
Findings:
Today controversy exists whether restoration of neutral mechanical alignment should be attempted in all patients undergoing TKA. The restoration of constitutional rather than neutral mechanical alignment may in theory lead to a more physiological strain pattern in the collateral ligaments, and could therefore potentially be beneficial to patients. It was therefore our purpose to measure collateral ligament strains during three motor tasks in the native knee and compare them with the strains noted after TKA in different postoperative alignment conditions. Six cadaver specimens were examined using a validated knee kinematics rig under physiological loading conditions. The effect of coronal malalignment was evaluated by using custom made tibial implant inserts in order to induce different alignment conditions. The results indicated that after TKA insertion the strains in the collateral ligaments resembled best the preoperative pattern of the native knee specimens when constitutional alignment was restored. Restoration to neutral mechanical alignment was associated with greater collateral strain deviations from the native knee. Based upon this study, we conclude that restoration of constitutional alignment during TKA leads to more physiological periarticular soft tissue strains during loaded as well as unloaded motor tasks.
In patients with neural disorders such as cerebral palsy, three-dimensional marker-based motion analysis has evolved to become a well standardized procedure with a large impact on the clinical decision-making process. On the other hand, in knee arthroplasty research, motion analysis has been little used as a standard tool for objective evaluation of knee joint function. Furthermore, in the available literature, applied methodologies are diverse, resulting in inconsistent findings [1]. Therefore we developed and evaluated a new motion analysis framework to enable standardized quantitative assessment of knee joint function. The proposed framework integrates a custom-defined motion analysis protocol with associated reference database and a standardized post-processing step including statistical analysis. Kinematics are collected using a custom-made marker set defined by merging two existing protocols and combine them with a knee alignment device. Following a standing trial, a star-arc hip motion pattern and a set of knee flexion/extension cycles allowing functional, subject-specific calibration of the underlying kinematic model, marker trajectories are acquired for three trials of a set of twelve motor tasks: walking, walking with crossover turn, walking with sidestep turn, stair ascent, stair descent, stair descent with crossover turn, stair descent with sidestep turn, trunk rotations, chair rise, mild squat, deep squat and lunge. This specific set of motor tasks was selected to cover as much as possible common daily life activities. Furthermore, some of these induce greater motion at the knee joint, thus improving the measurement-to-error ratio. Kinetics are acquired by integrating two forceplates in the walkway. Bilateral muscle activity of 8 major muscles is monitored with a 16 channel wireless electromyography (EMG) system. Finally, custom-built software with an associated graphical user interface was created for automated and flexible analysis of gait lab data, including repeatability analysis, analysis of specific kinematic, kinetic and spatiotemporal parameters and statistical comparisons.INTRODUCTION
MATERIALS AND METHODS
Optimal knee joint function obviously requires a delicate balance between the osseous anatomy and the surrounding soft tissues, which is distorted in the case of joint line elevation (JLE). Although several studies have found no correlation between JLE and outcome, others have linked JLE to inferior results. The purpose of this in vitro investigation was to evaluate the effect of JLE on tibiofemoral kinematics and collateral ligament strains. Six cadaver knees were equipped with reflective markers on femur and tibia and CT scans were made. A total knee arthroplasty (TKA) was performed preserving the native joint level. The knees were then tested in passive flexion-extension and squatting in a knee kinematics simulator while marker positions were recorded with an optical system. During squatting quadriceps forces were measured as well as tibio-femoral contact pressures. Finally, a revision TKA was performed with JLE by 4 mm. The femoral component was downsized and a thicker insert was used. The knees were again tested as before. Based on the bony landmarks identified in the CT scans and the measured trajectories of the markers, relative tibiofemoral kinematics could be calculated as well as distance changes between insertions of the collateral ligaments. Statistical tests were carried out to detect significant differences in kinematic patterns, ligaments elongation, tibiofemoral contact pressures and quadriceps forces between the primary TKA and after JLE.Introduction
Materials and Methods
After total knee arthroplasty (TKA) with a PCL-retaining implant the location of the tibiofemoral contact point should be restored in order to obtain normal kinematics. The difficulty during surgery is to control this location since the position of the femur on the tibia cannot easily be measured from the back of the joint. Therefore, we developed a simple “spacer technique” to check the contact point indirectly in 90° flexion after all bone cuts are made by measuring the step-off between the distal cut of the femur and the anterior edge of the tibia with a spacer in place. The goal of this experiment was to investigate whether this new PCL balancing approach with the spacer technique created the correct contact point location. Nine fresh-frozen full leg cadaver specimens were used. After native testing, prototype components of a new PCL-retaining implant were implanted using navigation and a bone-referenced technique. After finishing the bone cuts of tibia and femur, the spacer was inserted in flexion and positioned on the anterior edge of the bony surface to measure the step-off. If necessary, an extra cut was made to balance the PCL. The specimen was mounted on the knee kinematics rig and a squat with constant vertical ankle force (130N) and constant medial and lateral hamstrings forces (50N) was performed between 30° and 130° of knee flexion. The trajectories of the reflective tibial and femoral markers were continuously recorded using six infrared cameras. The projections of the femoral condylar centers on the horizontal plane of the tibia were calculated and compared.Introduction
Methods
We introduce the concept of total knee arthroplasty (TKA) fingerprinting as a tool to characterize and graphically convey the sensitivity of a TKA design to surgical variability in implant component position and patient-related anatomic factors. Identifying sensitive directions preoperatively which would cause undesirable effects may decrease revision surgery by informing surgical decisions and planning. To provide several examples of TKA fingerprinting, we estimated and compared the contact forces in a single TKA type for several configurations, simulating surgical variability and patient-related anatomical factors during a loaded deep squat. The purpose of this study is not to analyze the behavior of this specific TKA design but rather to illustrate a tool that could be used to show, in general, how surgical errors or anatomical factors can alter patello-femoral (PF) and tibio-femoral (TF) contact forces compared to its own reference configuration. Computed tomography images of one full cadaveric leg were used to generate 3D models of the bones and to obtain a physiological knee model assuming standard positions of the main soft tissue insertions. A fixed bearing posterior stabilized knee TKA design was considered in this study. The prosthesis was a medium size, replaced both cruciate ligaments and resurfaced the patella. Following standard surgical procedure, the TKA was virtually implanted, thus defining its reference configuration. Each derivative replaced knee model was then obtained by changing the values of one parameter, or a combination of two, in a range based on literature and surgical experience (Table 1). A 10 s loaded squat to 120° was performed for each configuration, with a constant vertical hip load of 200 N. These settings match the experimental tests performed in a previous in-vitro analysis on cadaver legs. Each replaced model was developed and analyzed using a validated musculoskeletal modeling software. The model of the knee included TF contacts and PF contacts of the TKA components, passive soft tissues and active muscle elements. The external forces (ground reaction and weights), the muscle forces (quadriceps and hamstrings) and the frictional forces are applied to the knee joint through the machine. The mechanical properties of the tissues were obtained from literature. With these settings, for each model, both the maximum PF and TF contact forces have been evaluated.Introduction
Materials and methods
Malrotation of the femoral component is a cause of patellofemoral maltracking after TKA. Its precise effect on the patellofemoral (PF) mechanics has not been well quantified. The aim of this study was to investigate the effect of malrotation of the femoral component on PF initial contact area, initial contact pressure and wear after 4 million full gait cycles in TKA using a knee simulator. Moreover, the influence of the counterface material (CoCr or OxZr) on PF wear was also investigated. Femoral components (FCs) were cemented onto specially designed fixtures, allowing positioning of the FC in different angles of axial rotation. Patellar buttons and FCs were then mounted in a Prosim knee simulator.Introduction
Materials & Methods
Patellofemoral joint (PFJ) replacement is a successful treatment option for isolated patellofemoral osteoarthritis. With this approach only the involved joint compartment is replaced and the femoro-tibial joint remains intact. Minimizing periprosthetic bone loss, which may occur due to the stress shielding effect of the femoral component, is important to insure long-term outcomes. The objective of this study was to investigate, using finite element analyses, the effects of patellofemoral replacement on the expected stress distribution of the distal femur eventually leading to changes in bone density. MRI images of a healthy knee were acquired, segmented and reconstructed into a 3D physiological model of the bony and cartilaginous geometries of distal femur and patella with patellar tendon and insertion of the quadriceps tendon. This model was modified to include PFJ replacements with either a Journey PFJ or a Richards II PFJ prosthesis, and a Genesis II TKA (Smith&Nephew, Memphis, TN). The prosthetic components were incorporated in the intact model based on the manufacturer's instructions or previously described surgical techniques (Figure 1). Cortical bone was modeled with orthotropic properties, while homogeneous linear isotropic elasticity was assumed for trabecular bone, cartilage, cement and femoral components materials. The patellar tendon was given Neo-Hookean behavior. UHMWPE patellar buttons for all designs were assigned non-linear elasto-plastic material. The simulated motion consisted of a 10 second loaded squat, starting from 0° until a flexion angle of 120° matching experimental kinematics tests performed in previous in-vitro analysis on physiological cadaveric legs [1-2]. The patella model was constrained fixing the distal part of the patellar ligament and applying a quadriceps force distributed on the quadriceps insertion on the proximal surface of the patella. During the dynamic simulation the average Von Mises stress was calculated in two regions of interest (ROI) defined in the femoral bone: one anterior and one proximal. The location of the ROIs was defined to fit the same regions as used in a previous bone mineral density analysis following patellofemoral arthroplasty (height 1cm, length 1cm).INTRODUCTION
METHODS
Proper positioning of the components of a knee prosthesis for obtaining post-operative knee joint alignment is vital to obtain good and long term performance of a knee replacement. Although the reasons for failure of knee arthroplasty have not been studied in depth, the few studies that have been published claim that as much as 25% of knee replacement failures are related to malpositioning or malalignment [x]. The use of patient-matched cutting blocks is a recent development in orthopaedics. In contrast to the standard cutting blocks, they are designed to fit the individual anatomy based on 3D medical images. Thus, landmarks and reference axes can be identified with higher accuracy and precision. Moreover, stable positioning of the blocks with respect to the defined axes is easier to achieve. Both may contribute to better alignment of the components. The objective of this study was to check the accuracy of femoral component orientation in a cadaver study using specimen-matched cutting blocks in six specimens; first for a bi-compartmental replacement, and then for a tri-compartmental replacement in the same specimen. Frames with infrared reflective spherical markers were fixed to six cadaveric femurs and helical CT scans were made. A bone surface reconstruction was created and the relevant landmarks for describing alignment were marked using 3D visualisation software (Mimics). The centres of the spherical markers were also determined. Based on the geometry of the articular surface and the position of the landmarks, custom-made cutting blocks were designed. One cutting block was prepared to guide implantation of a bi-compartmental device and another one to guide implantation of the femoral component of a total knee replacement. The knee was opened and the custom-made cutting block for the bi-compartmental implant was seated onto the surface. The block was used to make the anterior cut, after which it was removed and replaced with the conventional cutting block using the same pinning holes to ensure the same axial rotational alignment. The other cuts were made using the conventional cutting block and the bi-compartmental femoral component was implanted. Afterwards, a similar procedure was used to make the extra cuts for the total knee component. The position of the components with respect to the reflective markers was measured by locating three reference points and “painting” the articular surface with a wand with reflective markers. The position of all marker spheres was continuously recorded with four infrared cameras and Nexus software.Purpose
Materials and Methods
A comparative kinematic study was carried out on six cadaver limbs, comparing tibiofemoral kinematics in five different conditions: unloaded, under a constant 130 N ankle load with a variable quadriceps load, with and without a constant 50 N medial and lateral hamstrings load. Kinematics were described as translation of the projected centers of the medial (MFT) and lateral femoral condyles (LFT) in the horizontal plane of the tibia, and tibial axial rotation (TR) as a function of flexion angle. In passive conditions, the tibia rotated internally with increasing flexion, to an average of −16° (range −12/−20°, SD 3.0°). Between 0 – 40° flexion, the medial condyle translated forwards 4 mm (range 0.8/5.5 mm, SD 2.5 mm), followed by a gradual posterior translation, totaling −9 mm (range −5.8/−18.5 mm, SD 4.9 mm) between 40° – 140° flexion. The lateral femoral condyle translated posteriorly with increasing flexion completing −25 mm (range −22.6 – −28.2 mm, SD 2.5 mm). Dynamic, loaded measurements were carried out in a knee rig. Under a fixed ankle load of 130 N and variable quadriceps loading, tibial rotation was inverted, mean TR 4.7° (range −3.3°/11.8° SD 5.4°), MFT −0.5 mm (range = −4.3/2.4 mm, SD = 2.4 mm), LFT 3.3 mm (range = −3.6/10.6 mm, SD = 5.1 mm). As compared to the passive condition, all these excursions were significantly different: p=0.015, p=0.013, and p=0.011 for TR, MFT and LFT respectively. Adding medial and lateral hamstrings force of 50N each, reduced TR, MFT and LFT significantly as compared to the passive condition. In general, loading the knee with hamstrings and quadriceps reduces rotation and translation as compared to the passive condition. Lateral hamstring action is more influential on knee kinematics than medial hamstrings action.
The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter-and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, SD 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, SD 4.08). Of all the surfacederived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, SD 1.77). The posterior condylar line was the most consistent axis (range −2.96° to − 0.28°, SD 0.77) and the trochlear anteroposterior axis the least consistent axis (range − 10.62° to +11.67°, SD 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment.
High-flexion total knee replacement (TKR) designs
have been introduced to improve flexion after TKR. Although the
early results of such designs were promising, recent literature
has raised concerns about the incidence of early loosening of the
femoral component. We compared the minimum force required to cause
femoral component loosening for six high-flexion and six conventional
TKR designs in a laboratory experiment. Each TKR design was implanted in a femoral bone model and placed
in a loading frame in 135° of flexion. Loosening of the femoral
component was induced by moving the tibial component at a constant
rate of displacement while maintaining the same angle of flexion.
A stereophotogrammetric system registered the relative movement
between the femoral component and the underlying bone until loosening
occurred. Compared with high-flexion designs, conventional TKR designs
required a significantly higher force before loosening occurred
(p <
0.001). High-flexion designs with closed box geometry required
significantly higher loosening forces than high-flexion designs
with open box geometry (p = 0.0478). The presence of pegs further contributed
to the fixation strength of components. We conclude that high-flexion designs have a greater risk for
femoral component loosening than conventional TKR designs. We believe
this is attributable to the absence of femoral load sharing between
the prosthetic component and the condylar bone during flexion.
Complications involving the patellofemoral joint,
caused by malrotation of the femoral component during total knee replacement,
are an important cause of persistent pain and failure leading to
revision surgery. The aim of this study was to determine and quantify
the influence of femoral component malrotation on patellofemoral
wear, and to determine whether or not there is a difference in the
rate of wear of the patellar component when articulated against
oxidised zirconium (OxZr) and cobalt-chrome (CoCr) components. An The results suggest that patellar maltracking due to an internally
rotated femoral component leads to an increased mean patellar wear.
Although not statistically significant, the mean wear production
may be lower for OxZr than for CoCr components.
The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee. We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with elevation of the patellofemoral joint pressure, which was particularly marked in flexion >
90°. From our results we believe that more posterior positioning of the tibial component in total knee replacement would be beneficial to the patellofemoral joint.
Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.
The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°,