Implant removal after clavicle plating is common. Low-profile dual mini-fragment plate constructs are considered safe for fixation of diaphyseal clavicle fractures. The aim of this study was to investigate: (1) the biomechanical competence of different dual plate designs from stiffness and cycles to failure, and (2) to compare them against 3.5mm single superoanterior plating. Twelve artificial clavicles were assigned to 2 groups and instrumented with titanium matrix mandible plates as follows: group 1 (G1) (2.5mm anterior+2.0mm superior) and group 2 (G2) (2.0mm anterior+2.0mm superior). An unstable clavicle shaft fracture (AO/OTA15.2C) was simulated. Specimens were cyclically tested to failure under craniocaudal cantilever bending, superimposed with torsion around the shaft axis and compared to previous published data of 6 locked superoanterior plates tested under the same conditions (G3). Displacement (mm) after 5000 cycles was highest in G3 (10.7±0.8) followed by G2 (8.5±1.0) and G1 (7.5±1.0), respectively. Both outcomes were significantly higher in G3 as compared to both G1 and G2 (p≤0.027). Cycles to failure were highest in G3 (19536±3586) followed by G1 (15834±3492) and G2 (11104±3177), being significantly higher in G3 compared to G2 (p=0.004). Failure was breakage of one or two plates at the level of the osteotomy in all specimens. One G1 specimen demonstrated failure of the anterior plate. Both plates in other G1 specimens. Majority of G2 had fractures in both plates. No screw pullout or additional clavicle fractures were observed among specimens. Low-profile 2.0/2.0 dual plates demonstrated similar initial stiffness compared to 3.5mm single plates, however, had significantly lower failure endurance. Low-profile 2.5/2.0 dual plates showed significant higher initial stiffness and similar resistance to failure compared to 3.5mm single locked plates and can be considered as a useful alternative for diaphyseal clavicle fracture fixation. These results complement the promising results of several clinical studies.
Freehand distal interlocking of intramedullary nails is technical demanding and prone to handling issues. It requires the surgeon to precisely place a screw through the nail under x-ray. If not performed accurately it can be a time consuming and radiation expensive procedure. The aims of this study were to assess construct and face validity of a new training device for distal interlocking of intramedullary nails. 53 participants (29 novices and 24 experts) were included. Construct validity was evaluated by comparing simulator metrics (number of x-rays, nail hole roundness, drill tip position and accuracy of the drilled hole) between experts and novices. Face validity was evaluated by means of a questionnaire concerning training potential and quality of simulated reality using a 7-point Likert scale (range 1-7). Mean realism of the training device was rated 6.3 (range 4-7) and mean training potential as well as need for distal interlocking training was rated 6.5 (range 5-7) with no significant differences between experts and novices, p≥0.236. All participants stated that the simulator is useful for procedural training of distal nail interlocking, 96% would like to have it at their institution and 98% would recommend it to their colleagues. Total number of x-rays were significantly higher for novices (20.9±6.4 vs. 15.5±5.3), p=0.003. Successful task completion (hit the virtual nail hole with the drill) was significantly higher in experts (p=0.04; novices hit: n=12; 44,4%; experts hit: n=19; 83%). The evaluated training device for distal interlocking of intramedullary nails yielded high scores in terms of training capability and realism. Furthermore, construct validity was established as it reliably discriminates between experts and novices. Participants see a high further training potential as the system may be easily adapted to other surgical task requiring screw or pin position with the help of x-rays.
Helical plates potentially bypass the medial neurovascular structures of the thigh. Recently, two plate designs (90°- and 180°-helix) proved similar biomechanically behaviour compared to straight plates. Aims of this study were: (1) Feasibility of MIPO-technique with 90°- and 180°-helical plates on the femur, (2) Assessment of distances to adjacent anatomical structures at risk, (3) Comparison of these distances to using medial straight plates instead, (4) Correlation of measurements performed in anatomic dissection with CT-angiography. MIPO was performed in ten cadaveric femoral pairs using either a 90°-helical 14-hole-LCP (Group1) or a 180°-helical 15-hole-LCP-DF (Group2). CT angiography was used to evaluate the distances between the plates and the femoral arteries as well as the distances between the plates and the perforators. Subsequently, the specimens were dissected, and the distances were determined again manually. Finally, all helical plates were removed, and all measurements were repeated after application of straight medial plates (Group3). Closest overall distances between plates and femoral arteries were 15 mm (11 − 19 mm) in Group1, 22 mm (15 − 24 mm) in Group2 and 6 mm (1 − 8 mm) in Group3 with a significant difference between Group1 and Group3 (p < 0.001). Distances to the nearest perforators were 24 mm (15 − 32 mm) in Group1 and 2 mm (1 − 4 mm) in Group2. Measurement techniques (visual after surgery and CT-angiography) demonstrated a strong correlation of r2 = 0.972 (p < 0.01). MIPO with 90°- and 180°-helical plates is feasible and safe. Attention must be paid to the medial neurovascular structures with 90°-helical implants and to the proximal perforators with 180°-helical implants. Helical implants can avoid medial neurovascular structures compared to straight plates although care must be taken during their distal insertion. Measurements during anatomical dissection correlate with CT-angiography.
The lateral wall thickness (LWT) in trochanteric femoral fractures is a known predictive factor for postoperative fracture stability. Currently, the AO/OTA classification uses a patient non-specific measure to assess the absolute LWT (aLWT) and distinguish stable A1.3 from unstable A2.1 fractures based on a threshold of 20.5 mm. This approach potentially results in interpatient deviations due to different bone morphologies and consequently variations in fracture stability. Therefore, the aim of this study was to explore whether a patient-specific measure for assessment of the relative LWT (rLWT) results in a more precise threshold for prediction of unstable fractures. Part 1 of the study evaluated 146 pelvic radiographs to assess left-right symmetry with regard to caput-collum-angle (CCD) and total trochanteric thickness (TTT), and used the results to establish the rLWT measurement technique. Part 2 reevaluated 202 patients from a previous study cohort to analyze their rLWT versus aLWT for optimization purposes. Findings in Part 1 demonstrated a bilateral symmetry of the femur regarding both CCD and TTT (p ≥ 0.827) allowing to mirror bone's morphology and geometry from the contralateral intact to the fractured femur. Outcomes in Part 2 resulted in an increased accuracy for the new determined rLWT threshold (50.5%) versus the standard 20.5 mm aLWT threshold, with sensitivity of 83.7% versus 82.7% and specificity 81.3% versus 77.8%, respectively. The novel patient-specific rLWT measure can be based on the contralateral femur anatomy and is a more accurate predictor of a secondary lateral wall fracture in comparison to the conventional aLWT. This study established the threshold of 50.5% rLWT as a reference value for prediction of fracture stability and selection of an appropriate implant for fixation of trochanteric femoral fractures.
Proximal humeral shaft fractures are commonly treated with long straight plates or intramedullary nails. Helical plates might overcome the downsides of these techniques as they are able to avoid the radial nerve distally. The aim of this study was to investigate in an artificial bone model: (1) the biomechanical competence of different plate designs and (2) to compare them against the alternative treatment option of intramedullary nails. Twenty-four artificial humeri were assigned in 4 groups and instrumented as follows: group1 (straight 10-hole-PHILOS), group2 (MULTILOCK-nail), group3 (45°-helical-PHILOS) and group4 (90°-helical-PHILOS). An unstable proximal humeral shaft fracture was simulated. Specimens were tested under quasi-static loading in axial compression, internal/external rotation and bending in 4 directions monitored by optical motion tracking. Axial displacement (mm) was significantly lower in group2 (0.1±0.1) compared to all other groups (1: 3.7±0.6; 3: 3.8±0.8; 4: 3.5±0.4), p<0.001. Varus stiffness in group2 (0.8±0.1) was significantly higher compared to groups1+3, p≤0.013 (1: 0.7±0.1; 3: 0.7±0.1; 4: 0.8±0.1). Varus bending (°) was significantly lower in group2 compared to all other groups (p<0.001) and group4 to group1, p=0.022. Flexion stiffness in group1 was significantly higher compared to groups2+4 (p≤0,03) and group4 to group1, p≤0,029 (1: 0.8±0.1; 2: 0.7±0.1; 3: 0.7±0.1; 4: 0.6±0.1). Flexion bending (°) in group4 was higher compared to all other groups (p≤0.024) and lower in group2 compared to groups1+4, p≤0.024. Torsional stiffness remained non significantly different, p≥0.086. Torsional deformation in group2 was significantly higher compared to all other groups, p≤0.017. Shear displacement remained non significantly different, p≥0.112. From a biomechanical perspective, helical plating with 45° and 90° may be considered as a valid alternative fixation technique to standard straight plating of proximal third humeral fractures. Intramedullary nails demonstrated higher axial and bending stiffness as well as lower fracture gap movements during axial loading compared to all plate designs. However, despite similar torsional stiffness they were associated with higher torsional movements during internal/external rotation as compared to all investigated plate designs.
Recently, a new suture was designed to minimize laxity in order to preserve consistent tissue approximation while improving footprint compression after tendon repair. The aims of this study were: (1) to compare the biomechanical competence of two different high strength sutures in terms of slippage and failure load, (2) to investigate the influence of both knots number and different media (air, saline and fat) on the holding capacity of the knots. Alternating surgical knots of two different high-strength sutures (group1: FibreWire; group2: DynaCord; n = 105) were tied on two roller bearings with 50N tightening force. Biomechanical testing was performed in each medium applying ramped monotonic tension to failure defined in terms of either knot slippage or suture rupture. For each group and medium, seven specimens with either 3, 4, 5, 6, or 7 knots each were tested, evaluating their knot slippage and ultimate load to failure. The minimum number of knots preventing slippage failure and thus resulting in suture rupture was determined in each group and medium, and taken as a criterium for better performance when comparing the groups. In each group and medium failure occurred via suture rupture in all specimens for the following minimum knot numbers: group1: air – 7, saline – 7, fat – 7; group2: air – 6; saline – 4; fat – 5. The direct comparison between the groups when using 7 knots demonstrated significantly larger slippage in group1 (6.5 ± 2.2 mm) versus group2 (3.5 ± 0.4 mm) in saline (p < 0.01) but not in the other media (p ≥0.52). Ultimate load was comparable between the two groups for all three media (p ≥ 0.06). The lower number of required knots providing sufficient repair stability, smaller slippage levels and identical suture strength, combined with the known laxity alleviation effect demonstrate advantages of DynaCord versus FibreWire.
Helical plates are preferably used for proximal humeral shaft fracture fixation and potentially avoid radial nerve irritation as compared to straight plates. Aims:(1) to investigate the safety of applying different long plate designs (straight, 45°-, 90°-helical and ALPS) in MIPO-technique to the humerus. (2) to assess and compare their distances to adjacent anatomical structures at risk. MIPO was performed in 16 human cadaveric humeri using either a straight plate (group1), a 45°-helical (group2), a 90°-helical (group3) or an ALPS (group4). Using CT-angiography, distances between brachial arteries and plates were evaluated. Following, all specimens were dissected, and distances to the axillary, radial and musculocutaneous nerve were evaluated. None of the specimens demonstrated injuries of the anatomical structures at risk after MIPO with all investigated plate designs. Closest overall distance (mm(range)) between each plate and the radial nerve was 1(1-3) in group1, 7(2-11) in group2, 14(7-25) in group3 and 6(3-8) in group4. It was significantly longer in group3 and significantly shorter in group1 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the musculocutaneous nerve was 16(8-28) in group1, 11(7-18) in group2, 3(2-4) in group3 and 6(3-8) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.001. Closest overall distance (mm(range)) between each plate and the brachial artery was 21(18-23) in group1, 7(6-7) in group2, 4(3-5) in group3 and 7(6-7) in group4. It was significantly longer in group1 and significantly shorter in group3 as compared to all other groups, p<0.021. MIPO with 45°- and 90°-helical plates as well as ALPS is safely feasible and showed a significant greater distance to the radial nerve compared to straight plates. However, distances remain low, and attention must be paid to the musculocutaneous nerve and the brachial artery when MIPO is used with ALPS, 45°- and 90°-helical implants. Anterior parts of the deltoid insertion will be detached using 90°-helical and ALPS implants in MIPO-technique.
Proximal humeral shaft fractures are commonly treated with long straight locking plates endangering the radial nerve distally. The aim of this study was to investigate the biomechanical competence in a human cadaveric bone model of 90°-helical PHILOS plates versus conventional straight PHILOS plates in proximal third comminuted humeral shaft fractures. Eight pairs of humeral cadaveric humeri were instrumented using either a long 90°-helical plate (group1) or a straight long PHILOS plate (group2). An unstable proximal humeral shaft fracture was simulated by means of an osteotomy maintaining a gap of 5cm. All specimens were tested under quasi-static loading in axial compression, internal and external rotation as well as bending in 4 directions. Subsequently, progressively increasing internal rotational loading until failure was applied and interfragmentary movements were monitored by means of optical motion tracking. Flexion/extension deformation (°) in group1 was (2.00±1.77) and (0.88±1.12) in group2, p=0.003. Varus/valgus deformation (°) was (6.14±1.58) in group1 and (6.16±0.73) in group2, p=0.976. Shear (mm) and displacement (°) under torsional load were (1.40±0.63 and 8.96±0.46) in group1 and (1.12±0.61 and 9.02±0.48) in group2, p≥0.390. However, during cyclic testing shear and torsional displacements and torsion were both significantly higher in group 1, p≤0.038. Cycles to catastrophic failure were (9960±1967) in group1 and (9234±1566) in group2, p=0.24. Although 90°-helical plating was associated with improved resistance against varus/valgus deformation, it demonstrated lower resistance to flexion/extension and internal rotation as well as higher flexion/extension, torsional and shear movements compared to straight plates. From a biomechanical perspective, 90°-helical plates performed inferior compared to straight plates and alternative helical plate designs with lower twist should be investigated in future paired cadaveric studies.
Trochanteric fractures are associated with increasing incidence and represent serious adverse effect of osteoporosis. Their cephalomedullary nailing in poor bone stock can be challenging and associated with insufficient implant fixation in the femoral head. Despite ongoing implant improvements, the rate of mechanical complications in the treatment of unstable trochanteric fractures is high. Recently, two novel concepts for nailing with use of a helical blade – with or without bone cement augmentation – or an interlocking screw have demonstrated advantages as compared with single screw systems regarding rotational stability and cut-out resistance. However, these two concepts have not been subjected to direct biomechanical comparison so far. The aims of this study were to investigate in a human cadaveric model with low bone density (1) the biomechanical competence of cephalomedullary nailing with use of a helical blade versus an interlocking screw, and (2) the effect of cement augmentation on the fixation strength of the helical blade. Twelve osteoporotic and osteopenic femoral pairs were assigned for pairwise implantation using either short TFN-ADVANCED Proximal Femoral Nailing System (TFNA) with a helical blade head element, offering the option for cement augmentation, or short TRIGEN INTERTAN Intertrochanteric Antegrade Nail (InterTAN) with an interlocking screw. Six osteoporotic femora, implanted with TFNA, were augmented with 3 ml cement. Four study groups were created – group 1 (TFNA) paired with group 2 (InterTAN), and group 3 (TFNA augmented) paired with group 4 (InterTAN). An unstable pertrochanteric OTA/AO 31-A2.2 fracture was simulated. All specimens were biomechanically tested until failure under progressively increasing cyclic loading featuring physiologic loading trajectory, with monitoring via motion tracking.Introduction and Objective
Materials and Methods
Distal femoral fractures are commonly treated with a straight plate fixed to the lateral aspects of both proximal and distal fragments. However, the lateral approach may not always be desirable due to persisting soft-tissue or additional vascular injury necessitating a medial approach. These problems may be overcome by pre-contouring the plate in helically shaped fashion, allowing its distal part to be fixed to the medial aspect of the femoral condyle. The objective of this study was to investigate the biomechanical competence of medial femoral helical plating versus conventional straight lateral plating in an artificial distal femoral fracture model. Twelve left artificial femora were instrumented with a 15-hole Locking Compression Plate – Distal Femur (LCP-DF) plate, using either conventional lateral plating technique with the plate left non-contoured, or the medial helical plating technique by pre-contouring the plate to a 180° helical shape and fixing its distal end to the medial femoral condyle (n=6). An unstable extraarticular distal femoral fracture was subsequently simulated by means of an osteotomy gap. All specimens were tested under quasi-static and progressively increasing cyclic axial und torsional loading until failure. Interfragmentary movements were monitored by means of optical motion tracking.Introduction and Objective
Materials and Methods
Plating of geriatric distal femoral fractures with Locking Compression Plate Distal Femur (LCP–DF) often requires augmentation with a supplemental medial plate to achieve sufficient stability allowing early mobilization. However, medial vital structures may be impaired by supplemental medial plating using a straight plate. Therefore, a helically shaped medial plate may be used to avoid damage of these structures. Aim of the current study was to investigate the biomechanical competence of augmented LCP–DF plating using a supplemental straight versus helically shaped medial plate. Ten pairs of human cadaveric femora with poor bone quality were assigned pairwise for instrumentation using a lateral anatomical 15-hole LCP–DF combined with a medial 14-hole LCP, the latter being either straight or manually pre-contoured to a 90-degree helical shape. An unstable distal femoral fracture AO/OTA 33–A3 was simulated by means of osteotomies. All specimens were biomechanically tested under non-destructive quasi-static and destructive progressively increasing combined cyclic axial and torsional loading in internal rotation, with monitoring by means of optical motion tracking.Introduction and Objective
Materials and Methods
The impact of concomitant injuries in patients with proximal femoral fractures has rarely been studied. To date, the few studies published have been mostly single-centre research focusing on the influence of upper limb fractures. A retrospective cohort analysis was, therefore, conducted to identify the impact and distribution of concomitant injuries in patients with proximal femoral fractures. A retrospective, multicentre registry-based study was undertaken. Between 1 January 2016 and 31 December 2019, data for 24,919 patients from 100 hospitals were collected in the Registry for Geriatric Trauma. This information was queried and patient groups with and without concomitant injury were compared using linear and logistic regression models. In addition, we analyzed the influence of the different types of additional injuries.Aims
Methods
Femoral neck fractures account for half of all hip fractures and are recognized as a major public health problem associated with a high socioeconomic burden. Whilst internal fixation is preferred over arthroplasty for physiologically younger patients, no consensus exists about the optimal fixation device yet. The recently introduced implant Femoral Neck System (FNS) (DePuy Synthes, Zuchwil, Switzerland) was developed for dynamic fixation of femoral neck fractures and provides angular stability in combination with a minimally invasive surgical technique. Alternatively, the Hansson Pin System (HPS) (Swemac, Linköping, Sweden) exploits the advantages of internal buttressing. However, the obligate peripheral placement of the pins, adjacent to either the inferior or posterior cortex, renders the instrumentation more challenging. The aim of this study was to evaluate the biomechanical performance of FNS versus HPS in a Pauwels II femoral neck fracture model with simulated posterior comminution. Forty-degree Pauwels II femoral neck fractures AO 31-B2.1 with 15° posterior wedge were simulated in fourteen paired fresh-frozen human cadaveric femora, followed by instrumentation with either FNS or HPS in pair-matched fashion. Implant positioning was quantified by measuring the shortest distances between implant and inferior cortex (DI) as well as posterior cortex (DP) on anteroposterior and axial X-rays, respectively. Biomechanical testing was performed in 20° adduction and 10° flexion of the specimens in a novel setup with simulated iliopsoas muscle tension. Progressively increasing cyclic loading was applied until construct failure. Interfragmentary femoral head-to-shaft movements, namely varus deformation, dorsal tilting and rotation around the neck axis were measured by means of motion tracking and compared between the two implants. In addition, varus deformation and dorsal tilting were correlated with DI and DP. Cycles to 5/10° varus deformation were significantly higher for FNS (22490±5729/23007±5496) versus HPS (16351±4469/17289±4686), P=0.043. Cycles to 5/10° femoral head dorsal tilting (FNS: 10968±3052/12765±3425; HPS: 12244±5895/13357±6104) and cycles to 5/10° rotation around the femoral neck axis (FNS: 15727±7737/24453±5073; HPS: 15682±10414/20185±11065) were comparable between the implants, P≥0.314. For HPS, the outcomes for varus deformation and dorsal tilting correlated significantly with DI and DP, respectively (P=0.025), whereas these correlations were not significant for FNS (P≥0.148). From a biomechanical perspective, by providing superior resistance against varus deformation and performing in a less sensitive way to variations in implant placement, the angular stable Femoral Neck System can be considered as a valid alternative to the Hansson Pin System for the treatment of Pauwels II femoral neck fractures.
Being commonly missed in the clinical practice, Lisfranc injuries can lead to arthritis and long-term complications. There are controversial opinions about the contribution of the main stabilizers of the joint. Moreover, the role of the ligament that connects the medial cuneiform (MC) and the third metatarsal (MT3) is not well investigated. The aim of this study was to investigate the influence of different Lisfranc ligament injuries on CT findings under two specified loads. Sixteen fresh-frozen human cadaveric lower limbs were embedded in PMMA at mid-shaft of the tibia and placed in a weight-bearing radiolucent frame for CT scanning. All intact specimens were initially scanned under 7.5 kg and 70 kg loads in neutral foot position. A dorsal approach was then used for sequential ligaments cutting: first – the dorsal and the (Lisfranc) interosseous ligaments; second – the plantar ligament between the MC and MT3; third – the plantar Lisfranc ligament between the MC and the MT2. All feet were rescanned after each cutting step under the two loads. The average distances between MT1 and MT2 in the intact feet under 7.5 kg and 70 kg loads were 0.77 mm and 0.82 mm, whereas between MC and MT2 they were 0.61 mm and 0.80 mm, without any signs of misalignment or dorsal displacement of MT2. A slight increase in the distances MT1-MT2 (0.89 mm; 0.97 mm) and MC-MT2 (0.97 mm; 1.13 mm) was observed after the first disruption of the dorsal and the interosseous ligaments under 7.5 kg and 70 kg loads. A further increase in MT1-MT2 and MC-MT2 distances was registered after the second disruption of the ligament between MC and MT3. The largest distances MT1-MT2 (1.5 mm; 1.95 mm) and MC-MT2 (1.74 mm; 2.35 mm) were measured after the final plantar Lisfranc ligament cut under the two loads. In contrast to the previous two the previous two cuts, misalignment and dorsal displacement of 1.25 mm were seen at this final disrupted stage. The minimal pathological increase in the distances MT1-MT2 and MC-MT2 is an important indicator for ligamentous Lisfranc injury. Dorsal displacement and misalignment of the second metatarsal in the CT scans identify severe ligamentous Lisfranc injury. The plantar Lisfranc ligament between the medial cuneiform and the second metatarsal seems to be the strongest stabilizer of the Lisfranc joint. Partial lesion of the Lisfranc ligaments requires high clinical suspicion as it can be easily missed.
Unstable intertrochanteric hip fractures (AO 31A2) continue to be a challenge, as non-locking implants have shown a considerable rate of loss of reduction. Intramedullary fixation has been recommended, although screw cut-out has been identified as problematic. This study was performed to ascertain whether treatments with the established proximal femoral nail (PFN) and the newer PFNA with blade design (proximal femoral nail antirotation) have advantages over the use of the Percutaneous Compression Plate (PCCP, developed by Gotfried). Cohort study. Between March 2003 and March 2008, 134 patients with unstable fractures were treated with a PCCP, (n=44, 78.3 yrs, ASA 2.8), a PFN (n=50, 77.2 yrs, ASA 2.8), or a PFNA (n=40, 75.8 yrs, ASA 2.6). The patients (31 PCCP, 33 PFN, 30 PFNA) were then reexamined clinically and radiologically after approximately 21 months.Introduction
Methods
Aim of this study was to find out which factors influence the outcome after both column fractures of the acetabulum. We performed a retrospective analyse of 115 patients with both column acetabular fractures. The period between the injury and follow-up ranges between 2 and 19 years, 5,7 years on average. The initial displacement, the presence of a dislocation of the hip and fractures of the femoral head were analyzed on the initial radiographs. Postoperative displacement was classified according the classification of Matta. The common classifications of Helfet (posttraumatic arthrosis), Ficat/Arlet (femur head necrosis) and Brooker (periarticular calcification) were used to radiologically classify the long term results. Statistics were performed by the Chi-square-test.Aim of the study
Methods
The additive use of an external modular device may improve dorsal compression forces in pelvic external fixation. This would improve the efficiency of indirect reduction and stabilization with an anterior pelvic external fixator. The purpose of this study was to determine the forces of the posterior pelvis achieved by a new device improving the application of a supraacetabular anterior external fixator compared with other constructs. Synthetic pelvic models were used. Complete pelvic ring instability was created by symphyseal and unilateral sacroiliac joint disruption. Four different constructs of fixation were tested. A pressure-sensitive film was placed in the sacroiliac joint. The constructs were applied in a standardized way. The maximum sacroiliacal compression loads (N) of each trial was recorded. Statistics was performed with the student t-test.Objectives
Material and Method
Overlooked compartment syndrome represents a devastating complication for the patient. Invasive compartment pressure measurement continues to be the gold standard. However, repeated measurements in uncertain cases may be difficult to achieve. We developed a new, noninvasive method to assess tissue firmness by pressure related ultrasound. Decreased tissue elasticity by means of rising compartment pressures was mimicked by infusion of saline directly into the anterior tibial compartment of 6 human specimens post mortem. A pressure transducer (Codman) monitored the pressure of the anterior tibial compartment. A second transducer was located in a saline filled ultrasound probe head to allow a simultaneous recording of the probe pressure provoked by the user. The ultrasound images were generated at 5 and 100mmHg probe pressures to detect the tissue deformity by B-mode ultrasound. The fascial displacement was measured before and after compression (d). Subsequently, increments of 5mmHg pressure increases were used to generate a standard curve (0–80mmHg), thus mimicking rising compartment pressures. The intra-observer reliability was tested using 10 subsequent measurements. A correlation was determined between d and the simulated intacompartmental pressure (ICP) in the compartment. The Pearson correlation coefficient (r) was calculated. The reliability determined by the kappa value and a regression analysis was performed.Background
Methods