header advert
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 47 - 53
1 May 2024
Jones SA Parker J Horner M

Aims

The aims of this study were to determine the success of a reconstruction algorithm used in major acetabular bone loss, and to further define the indications for custom-made implants in major acetabular bone loss.

Methods

We reviewed a consecutive series of Paprosky type III acetabular defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical acetabular component. IIIB defects were planned to receive either a hemispherical acetabular component plus augments, a cup-cage reconstruction, or a custom-made implant. We used national digital health records and registry reports to identify any reoperation or re-revision procedure and Oxford Hip Score (OHS) for patient-reported outcomes. Implant survival was determined via Kaplan-Meier analysis.


Bone & Joint Open
Vol. 4, Issue 8 | Pages 635 - 642
23 Aug 2023
Poacher AT Hathaway I Crook DL Froud JLJ Scourfield L James C Horner M Carpenter EC

Aims

Developmental dysplasia of the hip (DDH) can be managed effectively with non-surgical interventions when diagnosed early. However, the likelihood of surgical intervention increases with a late presentation. Therefore, an effective screening programme is essential to prevent late diagnosis and reduce surgical morbidity in the population.

Methods

We conducted a systematic review and meta-analysis of the epidemiological literature from the last 25 years in the UK. Articles were selected from databases searches using MEDLINE, EMBASE, OVID, and Cochrane; 13 papers met the inclusion criteria.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 1 - 1
23 Jun 2023
Parker J Horner M Jones SA
Full Access

Contemporary acetabular reconstruction in major acetabular bone loss often involves the use of porous metal augments, a cup-cage construct or custom implant. The aims of this study were: To determine the reproducibility of a reconstruction algorithm in major acetabular bone loss. To determine the subsequent success of reconstruction performed in terms of re-operation, all-cause revision and Oxford Hip Score (OHS) and to further define the indications for custom implants in major acetabular bone loss.

Consecutive series of Paprosky Type III defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical cup.

IIIB defects were planned to receive either augment and cup, cup-cage or custom implant.

105 procedures in cohort 100 patients (5 bilateral) with mean age 73 years (42–94).

IIIA defects (50 cases) − 72.0% (95%CI 57.6–82.1) required a porous metal augment the remainder treated with a hemispherical cup alone. IIIB defects (55 cases) 71.7% (95%CI 57.6–82.1) required either augments or cup-cage. 20 patients required a hemispherical cup alone and 6 patients received a custom-made implant.

Mean follow up of 7.6 years. 6 re-revisions were required (4 PJI, 2 peri-prosthetic fractures & 1 recurrent instability) with overall survivorship of 94.3% (95% CI 97.4–88.1) for all cause revision. Single event dislocations occurred in 3 other patients so overall dislocation rate 3.8%. Mean pre-op OHS 13.8 and mean follow-up OHS 29.8.

Custom implants were used in: Mega-defects where AP diameter >80mm, complex discontinuity and massive bone loss in a small pelvis (i.e., unable to perform cup-cage)

A reconstruction algorithm can >70% successfully predict revision construct which thereafter is durable with a low risk of re-operation. Jumbo cup utilized <1/3 of cases when morphology allowed. The use of custom implants has been well defined in this series and accounts for <5% of cases.


Bone & Joint Open
Vol. 1, Issue 6 | Pages 302 - 308
23 Jun 2020
Gonzi G Rooney K Gwyn R Roy K Horner M Boktor J Kumar A Jenkins R Lloyd J Pullen H

Aims

Elective operating was halted during the COVID-19 pandemic to increase the capacity to provide care to an unprecedented volume of critically unwell patients. During the pandemic, the orthopaedic department at the Aneurin Bevan University Health Board restructured the trauma service, relocating semi-urgent ambulatory trauma operating to the isolated clean elective centre (St. Woolos’ Hospital) from the main hospital receiving COVID-19 patients (Royal Gwent Hospital). This study presents our experience of providing semi-urgent trauma care in a COVID-19-free surgical unit as a safe way to treat trauma patients during the pandemic and a potential model for restarting an elective orthopaedic service.

Methods

All patients undergoing surgery during the COVID-19 pandemic at the orthopaedic surgical unit (OSU) in St. Woolos’ Hospital from 23 March 2020 to 24 April 2020 were included. All patients that were operated on had a telephone follow-up two weeks after surgery to assess if they had experienced COVID-19 symptoms or had been tested for COVID-19. The nature of admission, operative details, and patient demographics were obtained from the health board’s electronic record. Staff were assessed for sickness, self-isolation, and COVID-19 status.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_4 | Pages 2 - 2
1 Feb 2014
Matthews S Horner M Zehra U Robson-Brown K Dolan P
Full Access

Introduction

Dual energy X-ray absorptiometry (DEXA) is the gold standard for assessing bone mineral density (BMD) and fracture risk in vivo. However, it has limitations in the spine because vertebrae show marked regional variations in BMD that are difficult to detect clinically. This study investigated whether micro-CT can provide improved estimates of BMD that better predict vertebral strength.

Methods

Ten cadaveric vertebral bodies (mean age: 83.7 +/− 10.8 yrs) were scanned using lateral-projection DEXA and Micro-CT. Standardised protocols were used to determine BMD of the whole vertebral body and of anterior/posterior and superior/inferior regions. Vertebral body volume was assessed by water displacement after which specimens were compressed to failure to determine their compressive strength. Specimens were then ashed to determine their bone mineral content (BMC). Parameters were compared using ANOVA and linear regression.