Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 71 - 71
24 Nov 2023
Heesterbeek P Pruijn N Boks S van Bokhoven S Dorrestijn O Schreurs W Telgt D
Full Access

Aim

Diagnosis of periprosthetic shoulder infections (PSI) is difficult as they are mostly caused by low-virulent bacteria and patients do not show typical infection signs, such as elevated blood markers, wound leakage, or red and swollen skin. Ultrasound-guided biopsies for culture may therefore be an alternative for mini-open biopsies as less costly and invasive method. The aim of this study was to determine the diagnostic value and reliability of ultrasound-guided biopsies for cultures alone and in combination polymerase chain reaction (PCR), and/or synovial markers for preoperative diagnosis of PSI in patients undergoing revision shoulder surgery.

Method

A prospective explorative diagnostic cohort study was performed including patients undergoing revision shoulder replacement surgery. A shoulder puncture was taken preoperatively before incision to collect synovial fluid for interleukin-6 (IL-6), calprotectin, WBC, polymorphonuclear cells determination. Prior to revision surgery, six ultrasound-guided synovial tissue biopsies were collected for culture and two additional for PCR analysis. Six routine care tissue biopsies were taken during revision surgery and served as reference standard.

Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV; primary outcome measure), and accuracy were calculated for ultrasound-guided biopsies, and synovial markers, and combinations of these.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 10 - 10
1 Jun 2021
Van Tienen T Defoort K van de Groes S Emans P Heesterbeek P Pikaart R
Full Access

Introduction

Post-meniscectomy syndrome is broadly characterised by intractable pain following the partial or total removal of a meniscus. There is a large treatment gap between the first knee pain after meniscectomy and the eligibility for a TKA. Hence, there is a strong unmet need for a solution that will relieve this post-meniscectomy pain. Goal of this first-in-man study was to evaluate the safety and performance of an anatomically shaped artificial medial meniscus prosthesis and the accompanying surgical technique.

Methods

A first-in-man, prospective, multi-centre, single arm clinical investigation was intended to be performed on 18 post-medial meniscectomy syndrome patients with limited underlying cartilage damage (Kellgren Lawrence scale 0–3) in the medial compartment and having a normal lateral compartment. Eventually 5 patients received a polycarbonate urethane mediale meniscus prosthesis (Trammpolin® medial meniscus prosthesis; ATRO Medical B.V., the Netherlands) which was clicked onto two titanium screws fixated at the native horn attachments on the tibia. PROMs were collected at baseline and at 6 weeks, 3, 6, 12 and 24 months following the intervention including X-rays at 6, 12 and 24 Months. MRI scans were repeated after 12 and 24 months.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 78 - 78
1 Mar 2021
Heesterbeek P Jacobs A Bovendeert F Susan S Meis J Goosen J
Full Access

Ruling out an infection in one-stage knee and hip revisions for presumed aseptic failure by conventional tissue cultures takes up to 14 days. Multiplex polymerase chain reaction (PCR) is a quick test (4–5 hours) for detecting infections. The purpose of this study was to evaluate the negative predictive value of an automated multiplex PCR for the detection of microorganisms in synovial fluid obtained intraoperatively in unsuspected knee and hip revisions.

The NPV of the multiplex PCR U-ITI system of synovial fluid compared to tissue cultures of knee and hip revisions was 95.7% and 92.5%, respectively. Cultures required several days for growth whereas the automated mPCR U-ITI system provided results within five hours.

The multiplex PCR U-ITI system is a quick and reliable test in ruling out infection in presumed aseptic knee and hip revisions. With this test the number of unsuspected infected revisions can be lowered and antibiotic overtreatment as well as undertreatment after one-stage revision arthroplasty can be avoided. This directly results in a reduction in length of hospital stay, hospital costs and possible antibiotic resistance development.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 20 - 20
1 Feb 2021
Mills K Heesterbeek P Van Hellemondt G Wymenga A Benard M Defoort K
Full Access

Introduction

A bicruciate retaining (BCR) TKA is thought to maintain a closer resemblance to the native knee kinematics compared to a posterior cruciate retaining (CR) TKA. With BCR TKAs retainment of the anterior cruciate ligament (ACL) facilitates proprioception and balance which is thought to lead to more natural knee kinematics and increased functional outcome. The aim of this study was to quantify and compare the kinematics of a BCR and CR TKA during functional tests.

Materials and Methods

In this patient-blinded randomized controlled trial, a total of 40 patients with knee osteoarthritis were included, 18 of them received a BCR TKA (Vanguard XP, Zimmer-Biomet) and 22 received a CR TKA (Vanguard CR, Zimmer-Biomet). Fluoroscopic analysis was done 1 year post-operatively. The main outcome was posterior femoral rollback (i.e. translation of the femorotibial contact point (CP)) of the BCR and CR TKA during a step-up test. Secondary, the kinematics during a lunge test were quantified as anterior-posterior (AP) translation of the femorotibial CP. Independent student t-tests (or non-parametric equivalent) were used to analyze the effect of BCR versus CR TKA on these measures, to correct for the multiple testing problem post-hoc Bonferroni-Holm corrections were applied.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 30 - 30
1 Dec 2019
Goosen J Heesterbeek P Beekman L Telgt D Vos F van der Velden C
Full Access

Aim

Long term use of antibiotics following surgical debridement are the cornerstone of PJI treatment. Due to increasing resistance of bacteria for many first line antibiotics new options are needed. One such option is linezolid known for its low percentage of resistance against many Gram positive bacteria causing PJI. Success rates up to 86% have been reported. At the same time many adverse events (AE) have been described including anemia, thrombocytopenia, gastrointestinal effects and sometimes neuropathy, e.g. irreversible vision loss [1, 2]. Therefore, linezolid use is advised to be limited to a maximum of 28 days. Literature about the effects of prolonged use is currently lacking and therefore this study will aim to determine the safety of long-term (>28 days) linezolid use in patients with orthopedic infections.

Methods

We performed a retrospective descriptive study on patient records of orthopedic patients who were treated with linezolid between January 2014 and January 2019 for >28 days. Data were collected from medical charts including co-morbidities, pre-existing liver/kidney dysfunctions, diagnosis, treatment, type of prosthesis, pathogens, adverse events associated with linezolid use and follow up laboratory data.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 3 - 3
1 Dec 2019
Goosen J Jacobs A Heesterbeek P Susan S Bovendeert F Meis J
Full Access

Aim

Currently, despite a thorough diagnostic work up, around ten percent of the presumed aseptic revisions turn out to have unexpected positive cultures during the revision procedure. The purpose of this study was to evaluate the negative predictive value (ruling out) of the automated multiplex PCR Unyvero i60 implant and tissue infection (ITI) cartridge (U-ITI) system for the detection of microorganisms in synovial fluid obtained intraoperatively.

Methods

A prospective study was conducted with 200 patients undergoing a one-stage knee or hip revision. In all patients six intraoperative tissue cultures were taken and a sample of synovial fluid which was analyzed as a culture and with the multiplex PCR U-ITI system. The primary outcome measure was the negative predictive value (NPV) of the multiplex PCR U-ITI system compared to the intraoperative tissue cultures to reliable rule out an infection.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 88 - 88
1 Apr 2019
Smulders K Rensch PV Wymenga A Heesterbeek P Groen B
Full Access

Background

The cruciate ligaments are important structures for biomechanical stability of the knee. For total knee arthroplasty (TKA), understanding of the exact function of the (PCL) and anterior (ACL) cruciate ligament during walking is important in the light of recent designs of bicruciate TKAs. However, studies evaluating in vivo function of the PCL during daily activities such as walking are scarce. We aimed to assess the role of the PCL during gait by measuring kinematics and kinetics of individuals with PCL deficiency and compare them with individuals with ACL deficiency and healthy young adults.

Methods

Individuals with unilateral PCL deficiency (PCLD; n=9), unilateral ACL deficiency (n=10) and healthy young adults performed (n=10) 10 walk trials (5 for each leg) in which they walked over a force platform. Motion analysis (Vicon Motion Capture System) was used to calculate joint angles and internal moments around the knee, hip and ankle in the sagittal plane. Joint angles and moments of the injured knee (in PCLD and ACLD) or left knee (in HYA) were compared between groups at weight acceptance, mid-stance and push-off phases (see Fig. 1). Clinical assessment included passive knee laxity (Kneelax) for anterior (in 20–30° knee flexion) and posterior tibia translation (in 70–90° knee flexion) and Lysholm questionnaires.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 83 - 83
1 Feb 2017
Kosse N Van Hellemondt G Wymenga A Heesterbeek P
Full Access

Introduction

The number of revisions of total knee replacements (TKR) increases annually. Because of reduced bone stock, stable fixation of the implant is important. The femoral and tibial components are usually cemented whereas stems can be placed either cemented or press-fit (hybrid construct). To assess the stability of revision TKR with either cemented or hybrid places implants a randomized controlled trial (RCT) was executed, by using radiostereometric analysis (RSA). The short-term results of this RCT showed no differences between the two groups in stability and clinical outcomes. Although there were no clinical or radiological signs of loosening, both groups showed implants micromotion > 1 mm or degree. These findings might indicate the possibility of loosening later in time; therefore, the current study investigated the stability of cemented versus hybrid-placed revision TKR 6.5 years after surgery. Additionally, clinical results were evaluated.

Methods

Of the 32 patients in the original RCT, 23 (12 cement, 11 press-fit) were available for mid-term follow-up measures. RSA images taken at baseline, 6 weeks, 3, 6, 12 and 24 months postoperatively were used from the previous study. New RSA images were taken at median 6.5 years (range 5.4–7.3) postoperatively. Stability of the femoral and tibial implants was assessed by using model-based RSA software (RSAcore, Leiden, The Netherlands) to determine micromotion. Clinical results were evaluated using the Knee Society Score (KSS), the Knee injury and Osteoarthritis Outcome Score (KOOS), active flexion, and VAS pain and satisfaction. Stability and clinical outcome were compared between the two groups using independent t-tests or Mann-Whitney U tests when applicable.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 139 - 139
1 Feb 2017
Marra M Heesterbeek P van de Groes S Janssen D Koopman B Wymenga A Verdonschot N
Full Access

Introduction

Tibial slope was shown to majorly affect the outcomes of Total Knee Arthroplasty (TKA). More slope of the tibial component could help releasing a too tight flexion gap in cruciate-retaining (CR) TKA and is generally associated with a wider range of post-operative knee flexion. However, an excessive tibial slope could jeopardize the knee stability in flexion. The mechanism by which tibial slope affects the function of CR-TKA is not well understood. Moreover, it is not known whether the tibial bone resection should be performed by referencing the anterior cortex (AC) of the tibia or the center of the tibial plateau (CP) and whether the choice of either technique plays a role. The aim of this study was to investigate the effect of tibial slope on the position of tibiofemoral (TF) contact point, knee ligament forces, quadriceps muscle forces, and TF and patellofemoral (PF) joint contact forces during squat activity in CR-TKA.

Methods

A previously validated musculoskeletal model of CR-TKA was used to simulate a squat activity performed by a 86-year-old male subject wearing an instrumented prosthesis [1,2]. Marker data over four consecutive repetitions of a squat motion were tracked using a motion optimization algorithm. Muscle and joint forces and moments were calculated from an inverse-dynamic analysis, coupled with Force-Dependent Kinematics (FDK) to solve knee kinematics, ligament and contact forces simultaneously. The tibial slope in the postoperative case was 0 degree and constituted the reference case for our simulations. In addition, eight additional cases were simulated with −3, +3, +6, +9 degrees of tibial slope, four of them simulating an AC referencing technique and four a CP technique.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 121 - 121
1 May 2016
Kosse N Heesterbeek P Schimmel J Van Hellemondt G Wymenga A Defoort K
Full Access

Background

To improve implant positioning in total knee arthroplasty (TKA) patient-specific instrumentation (PSI) has been introduced as alternative for conventional instrumentation (CI). Though the PSI technique offers interesting opportunities in TKA, there is no consensus about the effectiveness of PSI in comparison with CI and results concerning soft-tissue balancing remain unclear. Therefore, the primary aim of the present study was to investigate the varus-valgus laxity in extension and flexion in patients receiving a TKA using PSI compared with CI. Additionally, radiological, clinical and functional outcomes were assessed.

Methods

In this prospective randomization controlled trial, 42 patients with osteoarthritis received a Genesis II PS (Smith & Nephew, Memphis, Tennessee), with either PSI (Visionaire, Smith & Nephew) or CI (Smith & Nephew). Patients visited the hospital preoperative and postoperative after 6 weeks, 3 and 12 months. One-year postoperative varus-valgus laxity was measured in extension and flexion on stress radiographs. Additional assessments included: the hip-knee-ankle angle on long-leg radiographs, femoral and tibia component rotation on CT-scans, radiolucency, the Knee Society Score (KSS), VAS pain, VAS Satisfaction, Knee injury and Osteoarthritis Outcome score (KOOS), Patella score (Kujala), the University of California Los Angeles activity score (UCLA), the anterior-posterior laxity in 20° and 90° knee flexion, adverse events and complications. The outcome measures were compared using independent t-tests, non-parametric alternatives and repeated measurements, with a significance level of p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 35 - 35
1 May 2016
Heesterbeek P Kaptein B Wymenga A
Full Access

Introduction

Measuring the step off during total knee replacement (TKR) is a newly developed operative strategy (“spacer technique”; Heesterbeek et al, KSSTA 2014;22(3):650–9) to determine the optimal contact point (CP) of the femur with the tibia postoperative and to balance the posterior cruciate ligament (PCL) in cruciate-retaining TKR. Engineers have calculated the ideal step off for every size of the TKR, for which the tibiofemoral contact point in 90° will be at the designed position. With this study we determined the postoperative CP in CR-TKA and investigated whether (adverse) clinical outcome was correlated with the CP.

Methods

23 patients presenting with non-inflammatory osteoarthritis, a good functioning PCL, and indication for surgery with a PCL-retaining TKR were selected. Intraoperative PCL balancing was performed with the spacer technique. At 3 months postoperative, a pair of mediolateral radiographs was made using a set-up used for radiostereometric analysis (RSA). The patient was positioned standing with the operated leg in 90 degrees, 50% weight-bearing, knee flexion on a 30 cm-step. Model-based RSA software (RSAcore) was used to determine the 3D positions of the femur and tibia component, that were exported to custom-written software for determining the CP. The CP was defined as the point with the smallest distance between both the medial and lateral femur condyles and tibia plateau. It is expressed as the ratio of the anterior-posterior CP distance and the maximum anterior-posterior tibia plateau size, with 0 being anterior, 1 being posterior. Patients with reduced flexion capacity at follow-up, leading to manipulation under anaesthesia and/or scopic releases, were categorized as COMP, the other patients as no-COMP. CP was compared between these groups.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 36 - 36
1 May 2016
Benard M Heesterbeek P Wymenga A
Full Access

Background

Total knee arthroplasty (TKA) is a cost-effective surgical procedure for degenerative knee disease and has good long-term results. However, these results are not always related to patient satisfaction and functional outcome. With an increasing demand of surgeons and patients on functioning of total knee implants, the need for adequate objective outcome measures is high. Imaging of the knee is commonly used in clinical practice and research to objectively measure many different outcome parameters concerning the implant, such as alignment and complications.1 However, techniques on comparison of the sagittal contour of the knee before and after implant placement are scarce.

Goal

To develop and describe a standardized method for measuring the sagittal contour of the implant in a 3D model of the knee before and after implant placement.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 65 - 65
1 Sep 2012
Heesterbeek P Van Der Schaaf D Jacobs W Ham AT
Full Access

Background

In a mobile-bearing unicondylar knee arthroplasty (UKA) stability is very important for the knee function and to prevent dislocation of the insert. A tension-guided technique to determine the position of the optimal posterior bone cut should theoretically lead to a better varus-valgus stability. The goal of this study was to measure the difference in valgus laxity in flexion and extension between a tension-guided and spacer-guided system for mobile-bearing UKA. Also clinical function was evaluated between the groups.

Patients and Methods

A tension-guided UKA system (BalanSysTM, Mathys, Bettlach, Switzerland) was compared with a retrospective group of a spacer-guided system (Oxford, Biomet Ltd, Bridgend, UK). A total of 30 tension-guided UKAs were placed and compared to 35 spacer-guided prostheses. Valgus laxity was measured at least 6 months postoperatively in both groups using stress radiographs. The flexion stress radiographs were made fluoroscopically aided in 70 degrees of knee flexion. Laxity measurements in extension were performed on stress radiographs obtained with the Telos device. Knee Society Scores (KSS) were obtained at follow-up.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 66 - 66
1 Sep 2012
Heesterbeek P Labey L Wong P Innocenti B Wyemnga A
Full Access

Introduction

After total knee arthroplasty (TKA) with a PCL-retaining implant the location of the tibiofemoral contact point should be restored in order to obtain normal kinematics. The difficulty during surgery is to control this location since the position of the femur on the tibia cannot easily be measured from the back of the joint. Therefore, we developed a simple “spacer technique” to check the contact point indirectly in 90° flexion after all bone cuts are made by measuring the step-off between the distal cut of the femur and the anterior edge of the tibia with a spacer in place. The goal of this experiment was to investigate whether this new PCL balancing approach with the spacer technique created the correct contact point location.

Methods

Nine fresh-frozen full leg cadaver specimens were used. After native testing, prototype components of a new PCL-retaining implant were implanted using navigation and a bone-referenced technique. After finishing the bone cuts of tibia and femur, the spacer was inserted in flexion and positioned on the anterior edge of the bony surface to measure the step-off. If necessary, an extra cut was made to balance the PCL.

The specimen was mounted on the knee kinematics rig and a squat with constant vertical ankle force (130N) and constant medial and lateral hamstrings forces (50N) was performed between 30° and 130° of knee flexion. The trajectories of the reflective tibial and femoral markers were continuously recorded using six infrared cameras. The projections of the femoral condylar centers on the horizontal plane of the tibia were calculated and compared.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 463 - 464
1 Nov 2011
Heesterbeek P Keijsers N Verdonschot N Wymenga A
Full Access

Instability is a major cause for revision surgery in total knee replacement (TKR). With a balanced gap technique, the ligaments are theoretically balanced. However, there is concern that ligament releases needed to align the leg may cause instability. Furthermore, no information is available about the relationship between the amount of varus-valgus laxity directly after implantation and at a later postoperative interval. This prospective clinical study investigated whether ligament releases necessary during total knee replacement (TKR) led to a higher varus-valgus laxity during peroperative examination and after 6 months.

In this prospective cohort study, in 49 patients a primary TKR was implanted using a balanced gap technique. Varus and valgus laxity of the knee was assessed in extension and flexion (70 degrees) per-operative (before and after implant) with a navigation system and post-operative with standardised stress radiographs (both methods 15 Nm stress applied).

Knees were catalogued according to ligament releases performed during surgery: no releases, lateral releases, medial releases with posteromedial condyle (PMC), and medial releases with superficial medial collateral ligament (SMCL). ANOVA was used to test between release groups.

At surgery, before and after implantation of the prosthesis, there was no difference in varus or valgus laxity in extension and flexion between knees that did not need a ligament release (n=22), knees with lateral release (n=5), knees with medial SMCL releases (n=15) and knees with medial PMC releases (n=7). Six months after TKR, varus or valgus laxity in extension and flexion was not significantly different between the release categories.

In conclusion, ligament releases of the SMCL, PMC, and lateral structures performed during a balanced gap technique in TKR do not lead to an increased varus-valgus laxity in extension and flexion at 6 months after surgery. Therefore, routine releases of these structures to achieve neutral leg alignment can safely be performed without causing increased varus-valgus laxity. The results of this study suggest that the reported high incidence of revisions for ligament instability after TKR is not likely to be caused by routine ligament releases when a balanced gap technique is used. Apparently, there is not a ligament instability problem as long as the gaps are properly filled with prosthesis components. We believe that the conclusion of this study would also be valid when bone referenced techniques are applied instead of tensors, as long as the gaps created are balanced.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 432 - 432
1 Nov 2011
Heesterbeek P Keijsers N Verdonschot N Wymenga A
Full Access

Balancing the PCL in a PCL-retaining total knee replacement (TKR) is important, but sometimes difficult to execute in an optimal manner. Due to the orientation of the PCL it is conceivable that flexion gap distraction will lead to anterior movement of the tibia relative to the femur. This tibio-femoral repositioning influences the tibio-femoral contact point, which on its turn affects the kinematics of the TKR. So far, the amount of tibiofemoral repositioning during flexion gap distraction is unknown which leads to uncertain kinematic effects after surgery. The goal of this study was to quantitatively describe the parameters of the flexion gap (gap height, anterior tibial translation and femoral rotation) and their relationship while the knee is distracted during implantation of a PCL-retaining TKR with the use of computer navigation. Furthermore, the effect of PCL elevation angle on the flexion gap parameters was determined.

In 50 knees, during a ligament-guided TKR procedure, the flexion gap was distracted with a double-spring tensor with 100 and 200 N after the tibia had been cut. The flexion gap height, anterior tibial translation and femoral rotation were measured intra-operatively using a CT-free navigation system. PCL elevation was calculated based on the femoral and tibial insertion sites as indicated by the surgeon with the pointer of the navigation system.

To identify a relationship between flexion gap height increase and anterior tibial translation, the ratio between anterior translation and gap height increase was determined for each patient between 100 and 200 N.

The mean gap height increased 2.2 mm (SD 0.96) and mean increase in anterior tibial translation was 4.2 mm (SD 1.6). Hence, on average, for each mm increase in gap height, the tibia moved 1.9 mm (SD 0.96) in anterior direction. Knees with a steep PCL showed significantly more AP translation for each mm gap height increase (gap/AP-ratio was 1 : 2.31 (SD 0.63)) compared to knees with a flat PCL (gap/AP-ratio was 1 : 1.73 (SD 0.50)).

The increase in femur (exo)rotation was on average 0.60° (SD 1.4).

With a tensioned PCL the tibia will move anteriorly on average 1.9 mm for every extra mm that the flexion gap is increased. The flexion gap dynamics can be explained in part by the orientation of the PCL: the greater the elevation angle, the more anterior tibial displacement during distraction of the flexion gap. The surgeon must be aware that distraction of the flexion gap influences the tibiofemoral contact point. The tibio-femoral contact point will move posteriorly and stresses in the PCL will rise and produce limited flexion and pain. In case of a conforming insert AP-movement will be limited but high PE stresses may be introduced that can lead to wear. This information may be helpful in selecting the optimal soft tissue balancing procedure and the optimal PE insert thickness in PCL retaining TKR.