PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles.Introduction
Method
Healthy tendons are mainly composed of aligned collagen hierarchically organized from collagen fibrils to fiber bundles with a scarce cellular population mainly composed of tenocytes and tendon stem/progenitor cells. However, injured tendon acquires a fibrotic state characterized by a loss of ECM alignment and increased cellularization. The lack of reliable 3D models that recreate the organization and microenvironment of healthy and diseased tendons is one of the main obstacles faced by the scientific community. To recreate the architecture of healthy and diseased tendons, electrospun nanofiber scaffolds with anisotropic and isotropic nanotopography were developed. These scaffolds were coated with a shell consisting of cell-laden hydrogels encapsulating human adipose-derived stem cells (hASCs) to include the living component. To show the versatility of the system, extracellular vesicles (EVs) were encapsulated in the hydrogel as biological cues. The living fibers were characterized by microscopy and morphological analysis. The morphology and phenotype of cells was evaluated using microscopy, gene expression analysis and immunostainings for tendon markers.Introduction
Method