Abstract
Introduction
PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems.
Method
Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles.
Result
Nanoswitches showed sub-nanomolar affinity for their respective epitope, binding PIEZO1-expressing ECs similarly to antibodies. Expression of genes downstream of PIEZO1 activity significantly changed after magnetomechanical stimulation, demonstrating that nanoswitches can transduce this stimulus directly to PIEZO1 mechanoreceptors. Moreover, this wireless actuation system proved effective for modulating the expression of genes related to musculoskeletal differentiation pathways in ASCs, with RNA-sequencing showing pronounced shifts in extracellular matrix organization, signal transduction, or collagen biosynthesis and modification. Importantly, targeting each epitope led to different signaling effects, implying distinct roles for each domain in the sophisticated function of these channels.
Conclusion
This innovative wireless actuation technology provides a promising approach for dissecting PIEZO-mediated mechanobiology and suggests potential therapeutic applications targeting PIEZO1 in regenerative medicine for mechanosensitive tissues like tendon.
Acknowledgements
EU's Horizon 2020 ERC under grant No. 772817 and Horizon Europe under grant No. 101069302; FCT/MCTES for PD/BD/143039/2018, COVID/BD/153025/2022, 10.54499/2020.03410.CEECIND/CP1600/CT0013, 10.54499/2022.05526.PTDC, 10.54499/UIDB/50026/2020, 10.54499/UIDP/50026/2020, and 10.54499/LA/P/0050/2020.