Performance of metal-on-metal (MOM) bearings was of great interest until recently. Major concerns emerged over high incidence of MOM-wear failures and initially there appeared greater risks with MOM total hip arthroplasty (THA) designs compared to resurfacing arthroplasty (RSA). Impingement of the metal neck against the THA cup was likely the differentiating risk. There is a major difference between RSA and THA in (i) size of femoral necks and (ii) risk of THA metal necks impinging on metal cups. For example, a 46mm THA with 12.5mm neck, a 3.68 head:neck (H/N) ratio, provides a suitably large range-of-motion (ROM). In contrast, an RSA patient with retained 31mm size of natural neck would only have H/N = 1.48, indicating even less ROM than a Charnley THA. However, the enigma is that RSA patients have as good or better ROM in majority of clinical studies. We studied this apparent RSA vs THA dilemma by examining MOM retrievals for signs of adverse impingement. We previously described CoCr stripe wear in failed THA bearings, notably alignment of polar and basal wear stripes coincident with the rim profiles of the cups (Clarke 2013). Our governing hypothesis was that RSA patients had to routinely sublux their hips to get ROM comparable to THA. Our THA impingement studies showed polar stripes within 15o of the polar axis in large heads. For the various RSA diameters, we calculated that wear stripes angled 40o from the femoral axis could indicate impingement with no subluxation, whereas smaller angles would indicate routine subluxation of RSA femoral-shell from cup. We compared explanted RSA (N=15) and THA (N=15) bearings representing three vendors (42–54mm diameters). Wear maps and head-stripes were ink-marked for visualization, photography, and analysis. Wear areas were calculated using spherical equations and wear-stripe angles measured by computer graphics. The results showed that RSA femoral shells had wear areas circular in shape with areas varying 1,085- 3,121mm2. These averaged 14% larger than in matched THA heads but statistically significant difference was not proven. Polar stripes were readily identifiable on femoral components, 75% for RSA cases and 100% for THA. These contained identical linear scratches and all were sited within 30o of neck axis, confirming our hypothesis that RSA patients had to sublux their hips to achieve same motion as THA. Examination of cup wear areas revealed all showed ‘edge-loading’, but RSA cups had a significantly greater degree. Retrieval studies are limited by uncontrolled case sources, varied brands, and small numbers. In this study, we were able to match RSA and THA cases by vendor and diameter. The RSA retrievals revealed polar stripes identical to THA by site, topography and inclination to femoral-neck axis. This confirmed our starting hypothesis and explained the large clinical ROM available in RSA patients. The larger wear areas on RSA femoral shells, although not statistically significant, and the larger ‘edge loading’ sites in RSA cups appeared as further support for routine subluxation of femoral-shells during hip impingement.
Failed total hip arthroplasty (THA) can require novel designs of revision implants that present unique risks as well as benefits. One of our patients endured a series of hip and knee revisions. In her twenties, she experienced a failed THA, became infected and all implants removed. In her early fifties (2008), she had a proximal femoral replacement incorporating a FreedomTM cup (Biomet, Warsaw, IN). She lacked hip musculature, was a dislocation risk, and cup constraint was necessary. Our choice of Freedom cup provided a 36mm head for enhanced stability and range-of-motion, plus the polyethylene liner was not as encompassing as other constrained designs, and the external clamping ring came pre-installed. This unique design allows for ease of head insertion during surgery. Our patient also had a CompressTM fixator combined knee-arthroplasty (Biomet). This knee fixation failed in 2013 and we installed a total femur combined hinge-knee arthroplasty. The Freedom cup was kept and post-op results were satisfactory. Follow-up appeared satisfactory in 2014. Some liner eccentricity was apparent but the patient had no complaints. Radiographs in February 2016 indicated cup's locking-mechanism was possibly failing but patient had no complaints. By December follow-up of 2016, the patient claimed she had 3 falls, and her x-rays indicated a displaced head and dislodged liner. At revision, the liner appeared well-seated inside the acetabular shell. However, about 50% of the polyethylene rim was missing and the large detached circumferential fragment represented the other 50%. A new Freedom liner was installed and her follow-up appears satisfactory to date. The fractured liner was sectioned through the thinnest wall (under detached rim fragment). The most critical design section was at site of the external locking ring, this wall thickness appearing < 3mm, whereas eccentric cup dome was 7.5–8mm thick. Under the detached rim fragment, wall thickness had been reduced (in vivo) to < 1mm. Given the robust rim profile, it seemed unlikely that the liner could have been spinning. The more likely scenario was that with repeated impingement, attempted subluxations by the femoral head stressed the contra- polyethylene rim, resulting in cold flow, thinning, and rim fragmentation. Two exemplar liners were compared, one similar to our patient's and one in a thicker design. Comparison of the sectioned retrieval to the new liners confirmed major loss of circumferential polyethylene. Our learning experience was threefold; (i) if we had been aware of the thin wall limitation, possibly we could have inserted the thicker liner (larger shell), (ii) we could have been more alert to the impending liner failure (x- ray imaging), and (iii) positioning the cup in a more horizontal orientation may have been an alternate solution, i.e. more coverage (but perhaps more impingement). Use of a 32mm head would have facilitated a thicker liner but this option was unavailable. In conclusion, it was notable that this constrained liner functioned very well for 7 years in our complex case and was easily revised at 8 years to another Freedom liner.
Expectations for ceramic-on-metal (COM) bearings included (i) optimal lubrication due to smoother ceramic heads (ii), reduction of metal ions due to elimination of CoCr heads, and (iii) ‘differential hardness’ reducing adhesive wear and squeaking (Firkins 2001, Williams 2007). Additional benefits included (iv) use of heads larger than for ceramic-on-ceramic (COC), (v) reduction in taper corrosion and (vi) simulator studies clearly demonstrated metal ions and wear both reduced compared to MOM (Firkins 2001, Williams 2007, Ishida 2007). However, contemporary ‘3rd body wear’ paradigms focused only on metal debris size range 0.025–0.035um (Firkins 2001). Thus, neglected was the effect of hip impingement, provoking release of large metal particles sized 20–200um (Clarke 2013). In this study, we compared COM retrievals using hypotheses that adverse COM cases would demonstrate a combination of (a) steeply inclined cups, (b) liner “edge-loading”, (c) Ti6Al4V contamination on ceramic, and (d) evidence of 3rd-body CoCr wear by large particles. As a case example, this 51-year old female had her metal-polyethylene (MPE) bearing revised to COM in June 2011. She reported no symptoms 1-year post-op, but scans revealed a palpable mass in the inguinal region of left hip. By March 2013 the patient reported mild pain in her hip, which progressed to severe by April 2014. Scans showed a solid and cystic iliopsoas bursitis while cup position had changed from 43o to 73o inclination. Revision was performed in June 2014, her joint tissues were found extensively stained due to metal contamination, and histology described formation of a large pseudotumor. Analysis of retrieved components was by interferometry, SEM and EDS. Detailed maps were made of wear areas in heads and cups and volumetric wear was determined by CMM techniques. This adverse COM example revealed large diametral mismatch (595um) compared to COM controls (75–115um). The ceramic head had a broad polar stripe of CoCr contamination, roughness 0.1–0.3um high. Equatorial ceramic areas showed arrays of thin metal smears that demonstrated elemental Ti and Al. The CoCr liner revealed wear area into cup rim, as “edge loading”, and also featured a focal rim-defect over 18o circumferential arc. Liner scratches were 20um wide and larger, and wear-rate of CoCr liner averaged approximately 50mm3 per year. In contrast, ceramic head had minimal wear. Our study highlights the underappreciated risk of impingement by metallic prosthetic components. Prior studies of ceramic heads showed black metallic smears. With COM we can anticipate that the broad polar smear will be CoCr alloy (wear of liner on head). However, Ti6Al4V smearing on ceramic heads is a notable signpost indicating impingement by the Ti6Al4V acetabular shell. The femoral neck (Ti6Al4V: CoCr), may also be damaged. Release of large metal particles, 1500-times larger than prior predictions, provoke a particularly adverse ‘3rd body wear’ (Halim, 2015). Such cases confirm our four hypotheses, that COM bearings will then fail in a way similar to MOM. In contrast, COC bearings are immune to such impingement and 3rd-body metal damage.
Metal-on-metal (MOM) and ceramic-on-metal (COM) studies in total hip arthroplasty (THA) documented adverse wear termed “edge loading”. Laboratory simulations necessitated cups steeply inclined to produce edge- loading, whereby cup rims could attenuate the normal wear patterns. Size of cup wear-pattern was therefore key in defining edge-loading. From prior simulator studies (‘Anatomic’ test: ISO-14242), we could demonstrate a linear relationship between size of cup wear-patterns and MOM diameters, cup wear-areas decreasing from 18% to 8%. However, retrieval studies (COM/ MOM) showed cup wear-patterns in vivo were much larger, typically covering 50–55% cup surfaces (Clarke 2013: Koper 2015). In prior MOM Anatomic simulator study (head oscillating, cup fixed), we noted areas worn on 60mm heads and cups averaging 1,668mm2 and 442mm2, respectively (Bowsher 2009). Thus, ratio ×3.77 described distributed area worn on heads relative to focal area worn in cups. In the orbital simulator, the only way to achieve larger cup wear areas was to reverse the component positions, i.e. cups oscillating, heads fixed. The overall goal for this project was to develop an understanding of how such edge-loading affected adverse-wear performance of THA in simulators. 60mm MOM (DJO, Austin TX) were chosen comparable to our prior study (Bowsher 2009) and cups were mounted inverted (oscillating) under fixed heads. Adaptors were machined to incline cup faces at 17o and 27o and, with the simulator's +/−23° motion, they experienced 40oand 50o cyclic peak oscillations, respectively. The orbital simulator was identical to that of prior study as was the test protocol (Bowsher 2009). Wear patterns on components were assessed visually and microscopically, taped and colored red to aid photography. The 40° and 50° tests produced circular cup wear patterns that came progressively closer to the rims without actually producing edge-loading, creating average wear area of 1,663mm2. These proved identical to wear areas on heads (orbiting) in prior Anatomic test (1,668mm2). Using the hemispherical-area datum of 5,655mm2 for 60mm MOM, our test produced cup wear patterns with desired 29.4% coverage. The value of ISTA conferences is that by definition these bring new arthroplasty ideas and technologies to the forefront. The international guideline for simulators (ISO-14242) has proven useful for standard ‘Anatomic’ cup tests that do not require edge-loading conditions. However, ours is the 1st simulator study to; (i) predict the size of THA wear patterns, (ii) show that ratio of head: cup wear-areas average ×3.8 in favor of mobile component, and (iii) demonstrated cups can be run Inverted to produce more clinically-relevant wear patterns that in edge- loading studies. The new learning experience was that studies of edge-loading in THA cups need to consider the ‘Inverted’ test in order to simulate clinically relevant tribo-mechanical parameters. Compared to Anatomic test, the Inverted-cup test has the advantage of (iv) producing larger cup wear areas, (v) clinically-relevant attenuation of wear patterns at cup rim, and (vi) intermittent edge-loading (instead of constant loading) judged likely to apply to a larger patient population at risk.
Hip simulator studies with ceramic-on-metal (COM) predicted less wear than metal-on-metal (MOM: Isaac. 2009). While clinical evidence is scant, two COM case reports described pseudotumors with adverse cup positioning (Deshmukh 2012, Koper 2014). It would appear that our Korean case report is the first to describe pseudotumor formation in well-positioned COM arthroplasty and including detailed failure analysis. A 50-year old female (active salesperson) had bilateral avascular necrosis of her femoral heads. A left metal-on-polyethylene (MPE) hip was performed at outside institution in 2003. At our 3-yrs evaluation, radiographs showed well-functioning MPE hip. Five years later she complained of gradual left-hip pain (2011). Radiographs and CT scan demonstrated wear, osteolysis and loosening of both components. The revision in 2011 was by COM (Fig. 1), using S-ROM stem/sleeve, 36mm ceramic head (Biolox-delta), a CoCr liner and 54mm shell (Pinnacle: Depuy Inc). Cup inclination and anteversion were considered appropriate at 45° and 20° respectively; femoral anteversion of 15° was also appropriate. At 1-yr follow-up patient complained of mild discomfort in left COM hip (2012). Range of motion was painless and normal. Examination revealed a soft, non-tender swelling (2×3cm) in left inguinal region with no inflammation and radiographs were normal (Fig. 1a). One month later the patient complained of left hip pain, the previously noted swelling had increased in size, and she started to limp. Radiographs showed cup migration with increased inclination. CT scans showed a circumscribed lesion extending into iliopsoas region (Fig 2). Serum cobalt and chromium levels were high at 2.4 and 22.5µg/ L, respectively. At revision the pseudotumor and surrounding inflamed synovium was excised. The cystic soft-tissue swelling (stained black) extended into the joint (Fig. 2a). The ceramic head showed a large “black stripe” across the dome (Fig 2b). The cup was loose while the femoral stem was well fixed. Operative cultures of soft tissues and joint fluid were negative for infection while histopathology was consistent for metallosis (Fig. 3). Aggressive debridement was carried out, acetabular defects were filled with bone graft. Revision incorporated 32mm ceramic head (Biolox-delta), highly cross-linked liner and 52mm trabecular-metal shell (Depuy). Functionally the patient has continued to improve. By 6 months, serum ion concentrations decreased to Co:1.3 and Cr:2.54µg/ L with most recent ion levels lower still (Co:0.66 and Cr:0.42µg/ L). Ceramic head surfaces showed normal wear appearance. The large gray stripe identified on the highly polished dome contained Co and Cr metal-transfer from the CoCr liner (Fig. 2b). Thin gray stripes on equatorial head regions (x4 rougher than dome) represented contamination by Ti, Al and V, typical of adverse impingement against Ti6Al4V neck (Clarke 2013). There was a 100–150um defect on rim of CoCr liner as a result of impingement. Cup out-of-roundness was 476um compared to only 7um for ceramic head, thus cup wear dominated at 25–30mm3 volume. This case report was illustrative of the unpredictable and seldom diagnosed risk of habitual cup-to-neck impingement and the risk of relying on pristine simulator studies to predict outcomes in novel THA bearings.
There will be occasions when standards and guidelines stymie the development of new methods. For example, the majority of simulator studies utilized the international guideline specifying that cups will be positioned “Anatomically” (ISO-14242), i.e. acetabular liner is positioned above oscillating femoral head (Fig. 1). This can be disadvantageous for studies of “edge wear” in steeply inclined cups (Williams 2008, Leslie 2009, Angadji 2009). Importantly, such an “Anatomical” cup is fixed with respect to the resultant load-axis (Fig. 1d: R). This produces a constant edge-wear throughout the simulator's cycle. Our supposition was that it is more likely patients experience edge-wear intermittently, i.e. at extremes of motion. This intermittent effect can be best replicated with the cup mounted “Inverted” (Fig. 2), the rotating cam allowing precise selection of edge-wear at extreme of motion (Fig. 2c). An advantage of this method is that the wear-pattern in the orbiting cup is now much larger (Bowsher, 2009: x3.8 ratio), making edge-wear easier to achieve. Our hypotheses were that (1) the Inverted test would provide both “normal” and “edge wear” as defined (Clarke, 2015: steep-cup algorithm), (2) MOM wear rates under edge-wear condition would be greater than in standard simulator tests (Bowsher 2016) and (2) intermittent edge-wear of MOM cups (Inverted) would be less severe than in prior Anatomical tests (Williams 2008, Leslie 2009, Angadji 2009). The 60mm MOM bearings (DJO, Austin TX) were selected on the basis of prior Anatomical study (Bowsher, 2009), were run with cups Inverted, using identical test methods as before, in the orbital simulator. Wear-rates in 60mm heads revealed both run-in and steady-state wear phases (Fig. 3a). The weight-loss method showed perturbations due to protein contaminants but these appeared of minor concern over 10-million cycles. One cup was damaged during set-up, did not recover, and was not included in the analysis (Fig. 3b). Cup wear rates over 10-million cycles appeared very stable with excellent consistency (Fig. 3c). By end of test, the edge-wearing cups averaged 3.7 times higher wear than mating heads. Overall MOM wear averaged 1.6mm3 per million cycles. Apart from the first 100,000 cycles of run-in, no lubricant changed color during entire test. In this first study of its kind, we demonstrated both normal and edge-wear wear-patterns in accordance with predictions of the steep-cup algorithm (Clarke 2015), satisfying hypothesis #1. Wear rates with Inverted cups averaged 2.7 times greater wear than those in similar Anatomical study (Bowsher, 2009), satisfying hypothesis #2. The 60mm MOM wear rates Inverted were mid-range to those in the prior steep-cup Anatomical tests (range 1.3 – 1.9mm3 per 106 cycles). This neither satisfied nor eliminated hypothesis #3, perhaps due to confounding effects, i.e. different designs, MOM diameters and methods. In conclusion, the Inverted test in the simulator appears to offer considerable merit, perhaps analogous to patients who experience edge-wear only intermittently. In contrast the Anatomical test mode appears analogous to patients with mal-positioned cups, who therefore walk on the cup rim constantly throughout their gait cycle.
Despite 46 years clinical experience with ceramic-on-ceramic (COC) hip bearings, there is no data on what constitutes a successful long-term wear performance. There have been many studies of short-term failures (Dorlot, 1992; Nevelos, 2001, Walters, 2004). One retrieval study using optical-CMM technology (OCM) documented volumetric wear-rates ranging up to 7mm3/year on femoral heads (Esposito 2012). It was noted that 83% of these revisions showed stripe damage within 3–4 years. The supposition would appear to be that these were bearing-related failures. Our selected COC case for this study was particularly interesting, a female patient having her index surgery performed at age 17 and revised at age 49 (following onset of hip pain). This patient led an active lifestyle, went dancing multiple times per week, and was mother to three children. The 38mm AutophorTM THA (left hip) was eventually revised due to the cup painful migrating (Fig. 1: 32-years follow-up). Radiographs showed cup inclination at approximately 19°. Impingement marks were noted on the CoCr neck and collared stem (Fig. 2). Implant geometry and form factors were analyzed by standard contour measurement (CMM) while SEM and EDS imaging provided wear topography and evidence of metal contaminants. Linear and volumetric wear in head and cup were studied by OCM at Redlux (Southampton, UK). The head's main wear-pattern consisted of two overlapping circular areas (Fig. 3). The narrowest margin made by the wear-pattern was used to define the superior aspect of the head. By light microscopy, the superior main-wear zone covered 1490–1680mm2 area while the total bi-lobed area covered larger 2170mm2 area. OCM analysis delineated the same bi-lobed appearance of head wear with the superior worn area assessed at 1365mm2. The cup revealed a more extensive wear pattern that circumnavigated its surface. The black staining identified by EDS imaging in the cup revealed Co and Cr elements. By OCM technique the head volumetric wear was 179 mm³ and the cup was 214mm3 (Fig. 4), i.e. 20% greater than head. Volumetric wear-rate averaged 12.3mm3 per year for this pioneering alumina ceramic. This first demonstration of long-term, COC volumetric wear provides the foundation for retrieval and simulator studies alike. Our patient represented a “worst-case” scenario for hip-replacement surgery, due to extreme youth and long-term sporting life. While the superior wear pattern was not totally contained within the cup (Fig. 3), her implant positioning was clearly adequate. Nevertheless both cup edge-wear and CoCr contamination indicated this patient experienced habitual impingement, i.e. alumina cup rim wearing against CoCr femoral neck (Fig. 2). The head wear-pattern was distinctly bi-lobed but OCM images showed the majority of wear was in the superior hemisphere as noted in MOM retrievals (Clarke, 2013). The head wear-rate in this pioneering “Mittelmeier” THA averaged 5.6mm³/year over 32-years of follow-up. This appeared directly comparable to ceramic head wear measured with the same OCM-technique in modern ceramic THA (Esposito, 2012: 0.1 to 7mm3/year). This indicated to us that COC wear rates of the order 10–14mm3/year represented an acceptable “normal” level of performance in young and active individuals.
This study presents an unusual recurrent case of pigmented villonodular synovitis (PVNS) around a ceramic-on-metal (COM) hip retrieved at 9-years. PVNS literature relates to metal-polyethylene and ceramic-ceramic bearings. Amstutz reported 2 cases with MOM resurfacing and Xiaomei reported PVNS recurring at 14 years with metal-on-polyethylene THA. Friedman reported on PVNS recurrence in a ceramic THA. Ours may be the first reported case of recurrent PVNS of a ceramic-on-metal articulation. This young female patient (now 38-years of age) had a total hip replacement in 2006 for PVNS in her left hip. In her initial work-up, this case was presumed to be a pseudotumor problem, typical of those related to CoCr debris with high metal-ion concentrations. She had an CoCr stem (AML), 36mm Biolox-delta head (Ceramtec), and a Pinnacle acetabular cup with CoCr liner (Ultramet, Depuy J&J). This patient had no concerns regarding subluxation, dislocation or squeaking. Three years ago she complained of mild to moderate groin and thigh pain in her left hip. This worsened in the past year. She noticed increased swelling now with an asymmetry to her right hip. She went to the emergency room in Dec-2014 and was referred to a plastic surgeon. In our consult we reviewed MARS-MRI and CT-scans that demonstrated multiple mass lesions surrounding the hip. Laboratory results presented Co=0.7, Cr=0.3 ESR=38 and Crp=0.3. At revision surgery, the joint fluid was hemorrhagic/bloody with hemosiderin staining the soft tissues. Multiple large 4–5×5cm nodules were present in anterior aspect of the hip as well as multiple nodules surrounding posterior capsule and sciatic nerve. Pathology demonstrated a very cellular matrix with hemosiderin-stained tissue and multiple giant cells, which was judged consistent with PVNS. The trunnion showed no fretting, no contamination and no discoloration. The superior neck showed impingement due to low-inclination cup. There was minimal evidence of metal-debris staining the tissues. There was a large metallic-like stripe across the ceramic head. This is a particularly interesting case and may be the first reported recurrent PVNS around a ceramic-on-metal bearing (COM). Data is scant regarding clinical results of COM bearings and here we have a nine-year result in a young and active female patient. She was believed to have a metalosis-related pseudotumor yet her metal-ion levels were not alarmingly high and there was no particular evidence of implant damage or gross wear products. In addition, the CoCr trunnion appeared pristine. Our work-up continues with analyses of wear and histopath-evidence. This case may demonstrate the need for a broadening of the differential diagnosis when dealing with hip failures.
Use of “CPR” distance has proven clinical utility in stratifying risks of “steep cups” in MOM failures.[1, 4] The CPR indice has been defined as distance between point of intersection of the hip reaction force (Fig. 1: vector-R in contact patch) and closest point on the inner cup rim.[4] However, the CPR indice has limitations. It assumes that, (1) the hip load-vector (R) will be angled 10°-medial in all patients, (2) the contact patch will be same size in all patients, and (3) the contact patch will be invariant with increasing MOM diameter. In contrast it is known from retrieval studies that larger MOM bearings created much larger wear patches.[3] Furthermore, the size of cup wear-patches in MOM bearings can now be estimated with some certainty using simulator wear data.[2] Our objective was to develop an algorithm that would predict (i) contact-patch size for all cup designs and diameters, (ii) determine actual margin of safety (Fig. 1: MOS) for different laterally-inclined cups, and (iii) predict critical test angles for “steep” cup studies in hip simulators. The ‘CPR-distance’ (Fig. 1) is subtended by the CPA angle, but the true margin of safety is the distance from edge of wear patch to cup rim, indicated here by MOS angle. In this algorithm the wear-patch size (CAP angle) is a key parameter, as derived from MOM wear data (Fig. 2). The CAP angles decrease with increasing MOM diameter, as defined by strong linear trend (R=0.998). The key 2nd parameter is cup inclination angle that juxtaposes the wear-pattern to the cup rim (CCI). For hemispherical cups the critical inclination is given by Applicability of the new algorithm can be visualized with a 48mm MOM (cup ABA=160o) run in a standard simulator test (Fig. 3). The algorithm predicts that with cup at 40o inclination there is good margin of safety (11.8o), representing a 5mm distance. This would become much reduced at CIA = 50o, while true edge-wear appears at the 60o test inclination (Fig. 3. EW = −8.2o). For clinical comparison with ‘CPR-distances’, the algorithm shows that positioning the wear patch 10o-medial (Figs. 1, 3) has margin of safety averaging 11.5 mm (MOS) less than was predicted by the CPR indice. While CPR has shown clinical utility, it is believed that compensating for actual size of cup wear-patterns provides a more realistic risk assessment for different MOM diameters in different cup positions. Thus the new algorithm permits accurate depiction of cup wear-patterns for use in both clinical and simulator studies.
Metal-on-metal retrieval studies indicated that MOM wear-rates could rise as high as 60–70mm3/year in short-term failures (Morlock, 2008). In contrast, some MOM and ceramic-on-ceramic (COC) devices of 1970's era performed admirably over 2–3 decades (Schmalzreid, 1996; Shishido, 2003). While technology has aided analysis of short-term MOM and COC failures (Morlock 2008; Lord 2011), information on successful THA remains scant. Lack of long-term data creates difficulties in setting benchmarks for simulator studies and establishing guidelines for use in standards. In this study we compared clinical and wear histories for a 30-year MOM and a 32-year COC to establish such long-term, wear-rates. The McKeeTM retrieval was cemented and made 100% of CoCr alloy (Fig. 1a). This patient had a right femoral fracture at 47 years of age, treated by internal-fixation, which failed. Her revision with a Judet implant also failed, leaving her right hip as a Girdlestone. At the age of 68, she had a McKee THA implanted in left hip, and used it until almost 98 years of age (Campbell, 2003). The COC case was a press-fit AutophorTM THA, head and cup made of alumina ceramic, with the only metal being the CoCr stem (Fig. 1c). This was implanted in a female patient 17-years of age active in sports (water-skiing). This modular THA was revised 32-years later due to hip pain from cup migration. Wear on these implants was identified by stereomicroscopy and stained red for photography (Fig. 1). Cup-to-neck impingement was denoted by circumferential neck notching, roughness was assessed by interferometry, and wear determined by CMM (Lord, 2011). McKee head wear covered 1092mm2 area (Figs. 1a, 2: hemi-area ratio 58%). There was no stripe wear and head roughness was 36nm (Ra). Cup wear covered an area of 1790mm2 (hemi-area 63%). Circumferential damage was noted on the supero-posterior femoral neck with scuff marks also on posterior collar (Fig. 2c). Head and cup wear amounted to 37.7 and 25.2mm3, respectively. Total MOM wear was 62.9mm3, indicating a wear-rate of 2.1mm3/year. Ceramic head wear consisted of two circular patterns (Fig. 1c), the major one of area 1790mm2 (hemi-area 79%). No wear stripes were identified. Non-worn and extensively worn surfaces had roughness (Ra) 17nm and 123nm, respectively. The cup showed 360o circumferential arc of rim wear with a small, non-wear zone inferiorly (Fig. 1c). Gray metallic transfer was evident, EDS revealing Co and Cr (Fig. 3a). Head and cup wear volumes were 77.2 and 54mm3, respectively. Total COC wear amounted to 131.2mm3 indicating a wear-rate of 4.1mm3/year. These two THA functioned successfully over 3 decades. The McKee retrieval had minor signs of impingement but no adverse “stripe wear”. This MOM performed satisfactorily due to good positioning and patient's advanced age (68 to 98Yrs of age). The COC patient was 17 years of age at index surgery and active. The ceramic cup showed 360o of edge wear, CoCr transfer and a COC wear-rate double that of the MOM retrieval. Thus the high ceramic wear-resistance protected this youthful patient.
The purpose of this study was to determine the survivorship for a MOM implant series performed by a single community surgeon followed using a practical clinical model. A retrospective cohort of 104 primary MOM THA procedures (94 patients) were all performed by one surgeon at three local hospitals now with 10–13 years follow-up. Sixteen patients are deceased and 16 patients have been lost to follow-up. In the remaining 62 patients, 8 are bilateral providing a total of 70 THA for study. The clinical follow-up model included: hip scores, X-rays, ultrasound, and metal ion concentrations (Co, Cr, Ti). Due to the diversity of patient location, a variety of clinical labs were utilized for metal ions. Statistical methods included Kaplan-Meier survival curve and One-way ANOVA. Hip scores were available for 70 THA and of these 61 had a hip score (HHS) above 80 (87%). X-rays were available for 49 hips and of these 38 (78%) had lateral/version angles in the safe zone (Fig 1: inclination ≤ 55 and anteversion ≤ 35). Thirty-eight ultrasound exams were performed and of these three yielded fluid collections (8%). Metal ion concentrations were documented in 39 of 62 patients (63%, either serum or whole blood). Six outliers were identified with high concentrations of metal ions (Fig 2); Co 0.3–143.9 ppb (median 3.6), Cr 0.2–200.3 ppb (median 2.2) and Ti 2-110 ppb (median 54). Six patients were revised by the original surgeon. Three of six with elevated ions were documented as wear problems and the other three were revised for infection, femur fracture and metal-ion sensitivity. The survivorship of 92.5% at 10 years (Fig. 3) may be partly due to the exclusive use of antero-lateral approach performed by one surgeon with 78% of cups well placed and the MOM design used exclusively.
Retrieval studies of metal-on-metal (MOM) resurfaced hips revealed cup “edge wear” as a common failure mechanism [Morlock-2008]. Retrieval analysis of total hip arthroplasty (THA) also demonstrated extensive rim wear (Fig. 1: 190–220o arcs), typically across the superior cup [Clarke-2013]. Such wear patterns have not been demonstrated in hip simulator studies. The simulator “steep cup” models typically had motion arcs (flexion, etc.) input via the femoral head [Leslie-2008, Angadji-2009]. With fixed-inclination cups this produces constant loading of cup rim against the head (Fig. 2a). This is unlikely to be the physiological norm, unless patients walk constantly on the rims of mal-positioned cups. More likely the patients produce edge-wear intermittently due to functional and postural variations. Therefore a novel simulator model is proposed in which the cup undergoes edge-wear intermittently at one extreme of flexion (Fig. 2a). Our study objective using this new simulator model (Fig. 2a, b) was to (i) demonstrate MOM wear-rates and wear patches as a function of these dynamic-inclinations (40 o, 50 o, 70o), and (ii) compare the simulator data to MOM retrievals (Fig. 1). Two simulator studies were run, both using 60mm MOM. Four bearings were run to 1-million cycles (1Mc) with cups peaking at 40 and 50° dynamic-inclinations, thus providing control data with no edge-wear. In 2nd study, 4 MOM were run with cups given a dynamic-inclination of 70° to produce edge-wear effects. In study-2 currently at 2.5Mc duration, the femoral heads showed the two classical wear phases with run-in at 1.7mm³/Mc and steady-state at 0.084mm³/Mc (Fig. 3a). Wear-rate for cups at 2.34mm³/Mc was 40% higher than heads and continued to rise linearly with time (Fig. 3a). At 2.5Mc, cup wear averaged ×5.7 greater than heads and resulting wear-patterns extended 85°−225° around cup rim (Fig. 3b: average 151°). In study-1, wear patches in cups with 40° dynamic-inclination approached within 12.4mm of the cup rim as denoted by circumferential grooves. This margin-of-safety (MOS) represented a 24°angle. The cup wear-patch averaged area of 1,760mm2. With cups run at 70o dynamic-inclination, the wear patches were transferred an additional 30o towards the rim thereby representing a 6° transfer across the rim. This is the 1st wear study to use the new dynamic-inclination test mode to better simulate cup function in vivo. It was particularly satisfying to see the similarity in wear-patterns between retrieval (Fig. 1) and simulator cups (Fig. 3b). It is also the 1st study to monitor sites and magnitudes of cup wear areas and to purposely produce “edge wear”. The cups with 40° and 50° dynamic-inclinations had large margins of safety. With 70° dynamic-inclination the margin of safety was lost - effectively there was a 6° transfer of the wear patch across the cup rim. Even this apparently small effect at one location in each gait cycle sufficiently perturbed MOM performance that wear increased by an order of magnitude. Notably this was all cup wear and not by femoral head participation. The study continues but at 2.5Mc duration the cups revealed 5-fold greater wear than heads.
Metal-on-metal (MOM) retrieval studies have demonstrated that CoCr bearings used in total hip arthroplasty (THA) and resurfacing (RSA) featured stripe wear damage on heads, likely created by rim impact with CoCr cups.1-3 Such subluxation damage may release quantities of large CoCr particles that would provoke aggressive 3rd-body wear. With RSA, the natural femoral neck reduces the head-neck ratio but avoids risk of metal-to-metal impingement (Fig. 1).4 For this study, twelve retrieved RSA were compared to 12 THA (Table 1), evaluating, (i) patterns of habitual wear, (ii) stripe-wear damage and (iii) 3rd-body abrasive scratches. Considering RSA have head/neck ratios much lower than large-diameter THA, any impingement damage should be uniquely positioned on the heads. Twelve RSA and THA retrievals were selected with respect to similar diameter range and vendors with follow-up ranging typically 1–6 years (Table 1). Patterns of habitual wear were mapped to determine position in vivo. Stripe damage was mapped at three sites: polar, equatorial and basal. Wear patterns were examined using SEM and white light interferometry (WLI). Graphical models characterized the complex geometry of the natural femoral neck in coronal and sagittal planes and provided RSA head-neck ratios.4 Normal area patterns of habitual wear were similar on RSA and THA bearings. The wear patterns showing cup rim-breakout proved larger for RSA cups than THA. Polar stripes presented in juxtaposition to the polar axis in both RSA and THA (Fig. 1). As anticipated, basal stripes on RSA occurred at steeper cup-impingement angles (CIA) than THA. The micro-topography of stripe damage was similar on both RSA and THA heads. Some scratches were illustrative of 3rd-body wear featuring raised lips, punctuated terminuses, and crater-like depressions (Fig. 2). Neck narrowing observed following RSA procedures may be a consequence of impingement and subluxation due to the small head-neck ratios. However, lacking a metal femoral neck, such RSA impingement would not result in metal debris being released. Nevertheless it has been suggested that cup-to-head impingement produced large CoCr particles and also cup “edge wear” as the head orbits the cup rim.4 Our study showed that impingement had occurred as evidenced by the polar stripes and 3rd-body wear by large hard particles as evidenced by the wide scratches with raised lips. We can therefore agree with the prior study, that 2-body and 3rd-body wear mechanisms were present in both RSA and THA retrievals.
Over 40-years the dominant form of implant fixation has been bone cement (PMMA). However the presence of circulating PMMA debris represents a 3rd-body wear mechanism for metal-on-polyethylene (MPE). Wear studies using PMMA slurries represent tests of clinical relevance (Table 1). Cup designs now use many varieties of highly-crosslinked polyethylene (HXPE) of improved wear resistance. However there appears to be no adverse wear studies of vitamin-E blended cups.1–4 The addition of vitamin E as an anti-oxidant is the currently preferred method to preserve mechanical properties and ageing resistance of HXPE. Therefore the present study examined the response of vitamin-E blended liners to PMMA abrasion combined with CoCr and ceramic heads. The hip simulator wear study was run in two phases to compare wear with, (i) clean lubricants and (ii) PMMA slurries. The vitamin-e blended polyethylene liners (HXe+) were provided by DJO Surgical (Austin, TX) with 40mm CoCr and ceramic femoral heads (Biolox-delta). Polyethylene liners were run in standard “Inverted” test. (Table 1) All cups were run in ‘clean’ serum lubricant for 6-million load cycles (6Mc)5 and in a debris slurry (PMMA: 5mg/ml concentration) for 2Mc.4 A commercial bone cement powder was used as “abrasive” (Biomet, Warsaw, IN). PMMA slurries were added at test intervals 6, 6.5, 7 and 7.5Mc.4 Wear was assessed gravimetrically and characterized by linear regression. Bearing roughness was analyzed by interferometry and SEM.Introduction
Methods
Looking for optimal solutions to wear risks evident in total hip arthroplasty (THA), silicon nitride ceramic bearings (Si3N4) are noted for demanding high-temperature applications such as diesel engines and aerospace bearings. As high-strength ceramic for orthopedic applications, Si3N4 offers improved fracture toughness and fracture strength over contemporary aluminas (Al2O3). Our pilot studies of Si3N4 in 28mm diameter THA showed promising results at ISTA meeting of 2007.1 In this simulator study, we compared the wear resistance of 40mm to 28mm diameter Si3N4 bearings. The 28mm and 40mm bearings (Fig. 1) were fabricated from Si3N4 powder (Amedica Inc, Salt Lake City, UT).1 Wear tests run were run at 3kN peak load in an orbital hip simulator (SWM, Monrovia, CA) and. The lubricant was standard bovine serum (Hyclone: diluted to 17 mg/ml protein concentration). Wear was measured by gravimetric method and wear-rates calculated by linear regression. SEM and interferometic microscopic was performed at 3.5-million cycles (3.5Mc) to 12Mc. The simulator was run to 3.5Mc duration with no consistent weight-loss trends. The bearings could show either small positive or negative weight fluctuations in an unpredictable manner (Fig. 2). Surface analysis showed protein layers up to 3μm thick, furrowed due to abrasion by small particles (Fig. 3). The low ceramic wear was camouflaged by protein contaminants alternatively forming and shedding. From 3.5 to 12.8Mc duration we experimented with various detergents and wash-procedures, all to no avail. Protein coatings were also more prevalent on 44 mm heads, likely due to frictional heating by the larger diameter effect. Selected heads were washed with a mild acid solution - the cumulative effect appeared to be removal of some protein layers, but not in a predictable manner. The Si3N4 ceramic is used in demanding industrial applications and it is therefore unfortunate that we are yet not able to quantify the actual wear performance of Si3N4/ Si3N4 bearings (COC). The contaminating protein layers combined with low-wearing silicon nitride obscured the actual wear data. This has also been a problem in prior studies with alumina and zirconia bearings. Considerable challenges still stand in the way of the optimal biomaterials choices that will result in reduced risk of failure while providing extended lifetimes. Thus important issues remain unsolved and call for innovative solutions. Searching for a more effective ‘wear-measurement’ remedy, we noted that abrasive slurries of bone cement (PMMA) used in contemporary simulator studies were effective in promoting adverse wear in polyethylene bearings. These investigations also revealed that PMMA debris did not damage CoCr heads2,3, alumina heads4,5 or diffusion-hardened zirconia heads (ZrDH).6 We can therefore speculate at this ISTA meeting of 2014 that future ceramic wear tests should incorporate PMMA slurries. Here a new hypothesis can be formulated, that PMMA particulates will provide a continual and beneficial removal of contaminating proteins from the ceramic surfaces (see Fig. 3) and thereby aid definition of low-wearing COC bearings such as Si3N4. The application of non-oxide ceramics such as silicon nitride presented here may become a viable alternative for THA designs of next decade.Introduction
Hip simulators proved to be valuable, pre-clinical tests for assessing wear. Preferred implant positioning has been with cup mounted above head, i.e. ‘Anatomical’ (Figs. 1a-c) 1,2 while the ‘Inverted’ test (cup below head) was typically preferred in debris studies (Figs. 1d-f).3,4 In an Anatomical study, wear patterns on cups and heads averaged 442 and 1668 mm² area, respectively, representing 8% and 30% of available hemi-surface (Table 1), i.e. the head pattern was ×3.8 times larger than cup. This concept of wear patterns is illustrated well in the ‘pin-on-disk’ test (Fig. 1) in which the oscillating pin has the ‘contained’ wear area (CWP) and the large wear track on the disk is the ‘distributed’ pattern (DWP). Hip simulators also create CWP and DWP patterns, site dependant on whether Anatomical (Fig. 1a-c) or ‘Inverted’ (Fig. 1d-f) test. However there is scant foundation as to clinical merits of either test mode. Retrieval studies of MOM bearings have indicated that cups have the larger wear patterns, i.e. contrary to simulator tests running Anatomical cups (Table 1).5 Therefore we compared Anatomical and Inverted cup modes using 38mm and 40mm MOM in two 5-million cycle simulator studies. 38mm and 40mm MOM bearings were run in Anatomical mode (study-1) and Inverted (study-2) mode, respectively, in a hip simulator. Lubricant was bovine serum diluted to provide protein concentration 17 mg/ml. Wear was measured gravimetrically and wear-rates calculated by linear regression. Wear patterns were assessed by stereomicroscopy and compared to algorithms using standard spherical equations.Introduction
Methods
A 35-year-old female (age 35Yrs) had primary MOM total hip arthroplasty (THA) in 2008. At 8 months this patient postoperatively developed headaches, memory loss, vertigo, and aura-like symptoms that progressed to seizures. At 18 months review, she complained of progressive hip pain, a popping sensation and crepitus with joint motion. This patient weighed 284lbs with BMI of 38.5. Radiographs revealed the cup had 55° inclination, 39° anteversion (Fig. 1). Metal ion concentrations were high (blood: Co=126 mcg/L, Cr= 64mcg/L). Revision was performed in November 2010 A dark, serous fluid was observed, along with synovitis. The implants were well fixed and the femoral head could not be removed; thus the stem was removed by femoral osteotomy. With the head fused on this femoral stem, for the 1st time it was possible to precisely determine the habitual patterns of MOM wear relative to her in-vivo function. We investigated (1) size and location of wear patterns and (2) signs of cup-stem impingement to help explain her symptoms developed over 32 months follow-up. The retrieved MOM was a Magnum™ with head diameter 50mm and 50×56mm cup (Biomet). This was mounted on a Taperloc™ lateralized porous-coated stem. Components were examined visually and wear damage mapped by stereo-microscopy, interferometry, CMM, SEM, and EDS. Main-wear zone (MWZ) areas were calculated using standard spherical equations1 and centroidal vectors determined. The head-cup mismatch was 427um with the cup revealing a form factor of 228um. The cup showed wear area of 1275mm² that extended up to the cup rim over 150°arc. The cup rim was worn thin over a 90° arc with loss of cup bevel. The head showed an elliptical wear area of 2200mm2 located centrally on the superior-medial surface (ellipsoidal ratio ×1.2). Compared to the hemispherical surface (50mm: hemi-area = 3927mm2), the worn area represented hemi-area ratio of 56%. The centroidal vectors measured 8° anterior and 24° superior to the head's polar axis (Fig. 2). Stripe wear damage revealed multiple impingement sites. SEM and EDS revealed stripes were contaminated by metal transfer from the stainless-steel instruments used at revision. The main impingement position was identified (Fig. 3) indicating the site of repetitive subluxations whereby the subluxing head thinned the cup, i.e. “edge wear”. Cup and head wear patterns corresponded well, reinforcing our definition of the MWZ locations in vivo. The femoral MWZ was centrally located superiorly and medially with respect to the polar axis of the femoral neck and head. The noted impingement position indicated this patient had experienced repetitive subclinical subluxations (RSS).2 The taper inside the fused head may also have been a contributory factor that we cannot ignore. Nevertheless her excessive cup thinning was likely a result of a steep cup and considerable anteversion allowing the femoral head to sublux over the cup rim, thus thinning the cup and wearing the rim bevel, and producing MOM wear debris.
The relevance of fluid-film lubrication, elasto-hydrodynamic lubrication and ‘tribolayers’ for hip bearings has been the subject of much debate (Fisher 2012). However, knowledge of the thickness and distribution of proteins in and around the wear zone of metal-on-polyethylene (MPE) bearings is scant. The efficacy of protein lubrication with metal-on-metal bearings (MOM) is in discovery. This simulator study was designed to analyze film formation on MOM bearings using varied protein concentrations. The hypotheses were that increasing protein concentrations in the serum lubricant would result in 1) greater thickness of protein films, and 2) reduced MOM wear. The hip simulator was run for 5 million cycles (5 Mc) duration using 28 mm MOM bearings (DJO Inc) run with the cups anatomical. Lubricant protein concentrations were 16.5, 33, and 66 mg/ml. At each test interval of 1 Mc, the proteins films on CoCr surfaces were analyzed by both interferometry and SEM imaging in main-wear, transition-wear and non-wear zones. Thickness of protein films was measured using non-contacting interferometry. Areas of wear zones were mapped and measured and the areas compared. MOM wear rates were assessed gravimetrically. It was found that the proteins formed two types of film (Figure 1). Type-1 was visually hazy in appearance, grainy in structure, and most commonly found in the main-wear zone. This type of protein film was always present in the main-wear zone but its thickness (approximately 0.05 μm) did not increase with increase in the lubricant protein concentrations. Type-2 was visually rainbow-like in appearance, more gel-like with thick clumps appearing as islands on the CoCr surfaces, and more common in the transition zone. This type of film was always present (approximately 1 μm thick) and its thickness notably increased in cups with increased lubricant protein concentrations. This film remained relatively consistent on femoral heads and did not change with increased protein concentrations (Figure 2). The type-1 protein films were always detectable in the actual wear zones but only the type-2 film showed a build-up with protein concentration and only inside the cups. This may be partially a response to the orbital simulator set up. In the Anatomical test mode, the cup is fixed with respect to the load axis and the head oscillates. Thus the main-wear zone on the head had a distributed type of wear patch and the main-wear zone in the cup was fixed. This configuration would allow the type-2 proteins to accumulate around the edge of the cup wear zone. In contrast, they would be scraped off the wear zone of the orbiting femoral head. This study showed that protein films endure even inside the main-wear zone of MOM bearings. In addition, collaborative studies have shown that the protein films are highly mobile and stream across the main-wear zones. Thus there is both an interaction with the CoCr surfaces and a degradation phenomenon that likely results in the protein-rich layers in the transition regions. Figure 1: SEM images of type 1 and type 2 protein films. Figure 2: Protein films on MOM bearings under three different protein concentrations.
Is is believed that 3rd-body wear of polyethylene, be it from particles of bone, bone-cement (PMMA), or metal, is an unavoidable risk in total hip arthroplasty (THA). Simulator studies have demonstrated that wear in conventional polyethylene (CXPE) and highly crosslinked polyethylene (HXPE) cups increased 6 and 20-fold respectively when challenged by circulating 3rd-body PMMA particulates. There was no corresponding change in head roughness, i.e. the PMMA did not roughen CoCr surfaces. Many contemporary cup designs now use the vitamin-E process combined with higher crosslinking dosage (VEPE). However, little if anything is known about the VEPE debris. Therefore in this study we analyzed the morphology of VEPE particles from cups that had been run in, a) standard simulator test mode and b) adverse PMMA debris-challenge mode. The aim of this study was to determine how a clinically relevant challenge, such as addition of PMMA particles affected the wear debris. This had not been attempted previously due to contamination polyethylene by PMMA debris. The hypotheses were that, a) during the ‘clean’ test, VEPE would yield smaller debris of standard globular shape compared to controls (XPE) and b) in adverse PMMA challenge mode, VEPE debris size would increase and become more flake-like. The XPE and vitamin-E blended cups (VEPE) cups were gamma-irradiated at 7.5 Mrad and 15 Mrad, respectively. Cups were run Inverted and mated with ceramic femoral heads of diameter 44 mm (Biolox-delta, Ceramtec). The three test phases included; ‘clean’ for 6 million cycles (6 Mc), abrasive slurry 6–8 Mc (concentration 10g/L), and ‘clean’ 8–10 Mc. The debris was isolated using standard procedure for ‘clean’ tests and a modified procedure for the abrasive slurries. Particles were imaged using SEM and the micrographs analyzed (Image J). Approximately 600 particles were analyzed from each sample (4.5 Mc and 8 Mc) and morphology defined via aspect ratio (AR), equivalent circular diameter (ECD), and circular shape factor (CSF). The clean test revealed slight differences in shape factors for XPE and VEPE (AR, CSF within 30%: p <0.0001) but none with regard to size (p > 0.9999). The median ECD for both XPE and VEPE was approximately 0.55 μm. The abrasive test revealed a statistical difference (p < 0.0001) in shape compared to the clean test, but varied less than 25%. The greater change in debris morphology between the abrasive test and clean test was size, which increased 3.6 fold for VEPE particles (ECD = 2.0 μm) and 4.3 fold for XPE particles (ECD = 2.3 μm). It was determined that addition of vitamin E to the PE did not change the size, but did change the shape of PE debris particles up to 30%. This study was the first to isolate debris particles during an abrasive slurry test and determine morphology under such conditions. Debris particles formed in abrasive conditions were found to be 4-fold larger in diameter, suggesting a larger volume of shreds in comparison to the mostly submicron population observed under standard testing conditions. Figure 1: Boxplot of equivalent circular diameter values. Figure 2: Boxplot of aspect ratio values. Figure 3: Boxplot of circular shape factor values.
This study of retrieved 28 mm Metasul™ (cemented) revealed for the first time adverse wear effects created by impingement-subluxation in MOM. The 10 cases selected (with femoral stems) had annual follow-up 3–11 years. (1) Unequivocal evidence here shows that all heads routinely subluxed from the Metasul liners. Femoral stems revealed well-demarcated notches (DN) on necks and trunnions (Fig. 1a: n = 6), shallow cosmetic blemishes (Fig. 1b CB: n = 4), and abrasion by cement (Fig. 1b: PMMA). As demonstrated by EOS radiographs, impingement locations varied with implant positioning, pelvic mobility and patient functionality – both anterior and posterior notching (Fig. 1). The first impingement notch occurred with head located (Fig. 2a), whereas the head had subluxed from the cup at 2nd notch (Fig. 2b). The model demonstrated that patients gained 20° motion by such head-subluxation manoeuvres. It was surprising that there was no collateral damage evident on the liners. Even with severe notching of Ti6Al4V and CoCr stems, the cup rims generally appeared well-polished. Femoral heads revealed macro-stripe damage on articular surfaces (Fig. 3), as did cups. Basal and polar macro-stripes on heads were always located at hip impingement positions. The equatorial stripes were formed at main-wear zone boundaries. Thus equatorial stripes were likely created by some form of rim-impact damage (micro-separation) or by local ingress of 3rd-body wear particles under the cup rim. Micro-grooving was evident within these macro-size stripes and frequently featured large raised lips (Fig. 3), interpreted as signs of adverse 3rd-body wear mechanisms, and rarely described.(2) It would appear that large metal particulates were released during MOM impingement-subluxation manoeuvres and circulated the hip joint to producing severe 3rd-body abrasion. Gradual decomposition of such large debris to nano-sized particulates under joint loading would then produce the often-referenced ‘self polishing’ effect of CoCr. EDS studies revealed metal smears on the CoCr surfaces containing the elements of titanium alloy (Ti, Al, V). This was further evidence of impingement-subluxation manoeuvres.(1, 3) In-vivo cup wear patterns also appeared much larger than those produced in MOM simulators. Such differences likely reflected head-subluxation in vivo, whereby heads unconstrained by the subluxation maneuver were free to orbit up and even cross cup rims, i.e. “edge wear”. This appears to be the first study detailing the adverse wear mechanisms in MOM bearings. There are two limitations to our retrieval study, a) these wear results may not be representative for all MOM designs, and b) it is unknown whether such results have relevance to MOM cases continuing successfully.