Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

TRIBO-MECHANICAL AND CLINICAL RATIONALE TO EXPLAIN WHY CERAMIC-ON-METAL BEARINGS FAILED WHILE CERAMIC-ON-CERAMIC BEARINGS CONTINUE TO SHOW EXEMPLARY PERFORMANCE

The International Society for Technology in Arthroplasty (ISTA), 30th Annual Congress, Seoul, South Korea, September 2017. Part 2 of 2.



Abstract

Expectations for ceramic-on-metal (COM) bearings included (i) optimal lubrication due to smoother ceramic heads (ii), reduction of metal ions due to elimination of CoCr heads, and (iii) ‘differential hardness’ reducing adhesive wear and squeaking (Firkins 2001, Williams 2007). Additional benefits included (iv) use of heads larger than for ceramic-on-ceramic (COC), (v) reduction in taper corrosion and (vi) simulator studies clearly demonstrated metal ions and wear both reduced compared to MOM (Firkins 2001, Williams 2007, Ishida 2007). However, contemporary ‘3rd body wear’ paradigms focused only on metal debris size range 0.025–0.035um (Firkins 2001). Thus, neglected was the effect of hip impingement, provoking release of large metal particles sized 20–200um (Clarke 2013). In this study, we compared COM retrievals using hypotheses that adverse COM cases would demonstrate a combination of (a) steeply inclined cups, (b) liner “edge-loading”, (c) Ti6Al4V contamination on ceramic, and (d) evidence of 3rd-body CoCr wear by large particles.

As a case example, this 51-year old female had her metal-polyethylene (MPE) bearing revised to COM in June 2011. She reported no symptoms 1-year post-op, but scans revealed a palpable mass in the inguinal region of left hip. By March 2013 the patient reported mild pain in her hip, which progressed to severe by April 2014. Scans showed a solid and cystic iliopsoas bursitis while cup position had changed from 43o to 73o inclination. Revision was performed in June 2014, her joint tissues were found extensively stained due to metal contamination, and histology described formation of a large pseudotumor.

Analysis of retrieved components was by interferometry, SEM and EDS. Detailed maps were made of wear areas in heads and cups and volumetric wear was determined by CMM techniques. This adverse COM example revealed large diametral mismatch (595um) compared to COM controls (75–115um). The ceramic head had a broad polar stripe of CoCr contamination, roughness 0.1–0.3um high. Equatorial ceramic areas showed arrays of thin metal smears that demonstrated elemental Ti and Al. The CoCr liner revealed wear area into cup rim, as “edge loading”, and also featured a focal rim-defect over 18o circumferential arc. Liner scratches were 20um wide and larger, and wear-rate of CoCr liner averaged approximately 50mm3 per year. In contrast, ceramic head had minimal wear.

Our study highlights the underappreciated risk of impingement by metallic prosthetic components. Prior studies of ceramic heads showed black metallic smears. With COM we can anticipate that the broad polar smear will be CoCr alloy (wear of liner on head). However, Ti6Al4V smearing on ceramic heads is a notable signpost indicating impingement by the Ti6Al4V acetabular shell. The femoral neck (Ti6Al4V: CoCr), may also be damaged. Release of large metal particles, 1500-times larger than prior predictions, provoke a particularly adverse ‘3rd body wear’ (Halim, 2015). Such cases confirm our four hypotheses, that COM bearings will then fail in a way similar to MOM. In contrast, COC bearings are immune to such impingement and 3rd-body metal damage.


Email: