Abstract
Metal-on-metal (MOM) and ceramic-on-metal (COM) studies in total hip arthroplasty (THA) documented adverse wear termed “edge loading”. Laboratory simulations necessitated cups steeply inclined to produce edge- loading, whereby cup rims could attenuate the normal wear patterns. Size of cup wear-pattern was therefore key in defining edge-loading. From prior simulator studies (‘Anatomic’ test: ISO-14242), we could demonstrate a linear relationship between size of cup wear-patterns and MOM diameters, cup wear-areas decreasing from 18% to 8%. However, retrieval studies (COM/ MOM) showed cup wear-patterns in vivo were much larger, typically covering 50–55% cup surfaces (Clarke 2013: Koper 2015). In prior MOM Anatomic simulator study (head oscillating, cup fixed), we noted areas worn on 60mm heads and cups averaging 1,668mm2 and 442mm2, respectively (Bowsher 2009). Thus, ratio ×3.77 described distributed area worn on heads relative to focal area worn in cups. In the orbital simulator, the only way to achieve larger cup wear areas was to reverse the component positions, i.e. cups oscillating, heads fixed. The overall goal for this project was to develop an understanding of how such edge-loading affected adverse-wear performance of THA in simulators.
60mm MOM (DJO, Austin TX) were chosen comparable to our prior study (Bowsher 2009) and cups were mounted inverted (oscillating) under fixed heads. Adaptors were machined to incline cup faces at 17o and 27o and, with the simulator's +/−23° motion, they experienced 40oand 50o cyclic peak oscillations, respectively. The orbital simulator was identical to that of prior study as was the test protocol (Bowsher 2009). Wear patterns on components were assessed visually and microscopically, taped and colored red to aid photography.
The 40° and 50° tests produced circular cup wear patterns that came progressively closer to the rims without actually producing edge-loading, creating average wear area of 1,663mm2. These proved identical to wear areas on heads (orbiting) in prior Anatomic test (1,668mm2). Using the hemispherical-area datum of 5,655mm2 for 60mm MOM, our test produced cup wear patterns with desired 29.4% coverage.
The value of ISTA conferences is that by definition these bring new arthroplasty ideas and technologies to the forefront. The international guideline for simulators (ISO-14242) has proven useful for standard ‘Anatomic’ cup tests that do not require edge-loading conditions. However, ours is the 1st simulator study to; (i) predict the size of THA wear patterns, (ii) show that ratio of head: cup wear-areas average ×3.8 in favor of mobile component, and (iii) demonstrated cups can be run Inverted to produce more clinically-relevant wear patterns that in edge- loading studies. The new learning experience was that studies of edge-loading in THA cups need to consider the ‘Inverted’ test in order to simulate clinically relevant tribo-mechanical parameters. Compared to Anatomic test, the Inverted-cup test has the advantage of (iv) producing larger cup wear areas, (v) clinically-relevant attenuation of wear patterns at cup rim, and (vi) intermittent edge-loading (instead of constant loading) judged likely to apply to a larger patient population at risk.