Osteoporosis accounts for a major risk factor of fracture-associated disability or premature death in the elderly. Enhancement of bone anabolism for slowing osteoporosis is highly demanding. Exerkine fibronectin type III domain containing 5 (FNDC5) regulates energy metabolism, inflammation, and aging. This study was aimed to investigate whether Fndc5 signaling in osteoblasts changed estrogen deficiency-mediated bone loss or microarchitecture deterioration. Female osteoblast-specific Fndc5 transgenic mice (Fndc5Tg), which overexpressed Fndc5 under the control of key osteoblast marker osteocalcin promoter, were given bilateral ovariectomy to induce estrogen deficiency-mediated osteoporosis. Bone mass, microstructures, and biomechanical properties were quantified using μCT imaging and material testing. Dynamic bone formation was traced using fluorescence calcein. Osteogenic differentiation and adipocyte formation of bone-marrow mesenchymal cells were investigated using von Kossa staining and Nile red staining, respectively. Serum osteocalcin, CTX-1 and TRAP5b levels were quantified using designated ELISA kits. Mitochondrial respiration was investigated using Seahorse Extracellular Flux Analyzer.Introduction
Method
Cartilage damage is a critical aspect of osteoarthritis progression, but effective imaging strategies remain limited. Consequently, multimodal imaging approaches are receiving increased attention. Gold nanomaterials, renowned for their therapeutic and imaging capabilities, hold promise in drug development. However, their potential for cartilage imaging is rarely discussed. Here, we developed a versatile nanomaterial, AuNC@BSA-Gd-I, for cartilage detection. By leveraging electrostatic interactions with sulfated glycosaminoglycans (sGAG), the AuNC@BSA-Gd-I can effectively penetrate damaged cartilage while accumulating minimally in healthy cartilage. This probe can be visualized or detected using CT, MRI, IVIS, and a gamma counter, providing a comprehensive approach to cartilage imaging. Additionally, we compared the imaging abilities, cartilage visualization capacities, and versatility of currently disclosed multimodal gold nanomaterials with those of AuNC@BSA-Gd-I. The physicochemical properties of nanomaterials were measured. The potential for cartilage visualization of these nanomaterials was assessed using an Introduction
Method
Obesity is correlated with the development of osteoporotic diseases. Gut microbiota-derived metabolite trimethylamine-n-oxide (TMAO) accelerates obesity-mediated tissue deterioration. This study was aimed to investigate what role TMAO may play in osteoporosis development during obesity. Mice were fed with high-fat diet (HFD; 60 kcal% fat) or chow diet (CD; 10 kcal% fat) or 0.2% TMAO in drinking water for 6 months. Body adiposis and bone microstructure were investigated using μCT imaging. Gut microbiome and serum metabolome were characterized using 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry. Osteogenic differentiation of bone-marrow mesenchymal cells was quantified using RT-PCR and von Kossa staining. Cellular senescence was evaluated by key senescence markers p16, p21, p53, and senescence association β-galactosidase staining. HFD-fed mice developed hyperglycemia, body adiposis and osteoporosis signs, including low bone mineral density, sparse trabecular microarchitecture, and decreased biomechanical strength. HFD consumption induced gut microbiota dysbiosis, which revealed a high Firmicutes/Bacteroidetes ratio and decreased α-diversity and abundances of beneficial microorganisms Akkermansiaceae, Lactobacillaceae, and Bifidobacteriaceae. Serum metabolome uncovered increased serum L-carnitine and TMAO levels in HFD-fed mice. Of note, transplantation of fecal microbiota from CD-fed mice compromised HFD consumption-induced TMAO overproduction and attenuated loss in bone mass, trabecular microstructure, and bone formation rate. TMAO treatment inhibited trabecular and cortical bone mass and biomechanical characteristics; and repressed osteogenic differentiation capacity of bone-marrow mesenchymal cells. Mechanistically, TMAO accelerated mitochondrial dysfunction and senescence program, interrupted mineralized matrix production in osteoblasts. Gut microbial metabolite TMAO induced osteoblast dysfunction, accelerating the development of obesity-induced skeletal deterioration. This study, for the first time, conveys a productive insight into the catabolic role of gut microflora metabolite TMAO in regulating osteoblast activity and bone tissue integrity during obesity.
Chondrocytic activity is downregulated by compromised autophagy and mitochondrial dysfunction to accelerate the development of osteoarthritis (OA). Irisin is a cleaved form of fibronectin type III domain containing 5 (FNDC5) and known to regulate bone turnover and muscle homeostasis. However, little is known about the role of irisin in chondrocytes and the development of OA. This talk will shed light on FNDC5 expression by human articular chondrocytes and compare normal and osteoarthritic cells with respect to autophagosome marker LC3-II and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG). In chondrocytes
Osteoarthritis (OA) is the leading cause of pain and disability worldwide and is characterized by the degenerative changes of articular cartilage. Joint loading is required for cartilage maintenance; however, hyper-physiologic loading is a risk factor for OA. Mechanosensitive ion channels Piezo1 and Piezo2 synergistically transduce hyper-physiologic compression of chondrocytes, leading to chondrocyte death and onset of OA. This injury response is inhibited by Piezo channel loss of function, however the mechanistic role of Piezo channels Aggrecan-Cre Knockout of Chondrocyte-specific
In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical assessment of soft tissue changes. First, we have developed an animal model of ACS to replicate the physiological changes during the condition. Secondly, we have developed a mechanical assessment tool for quantitative pre-clinical assessment of ACS. Our hand-held indentation device provides an accurate method for investigations into the local dynamic mechanical properties of soft tissue and for in-situ non-invasive assessment and monitoring of ACS. Our compartment syndrome model was developed on the cranial tibial and the peroneus tertius muscles of a pig's leg (postmortem). The compartment syndrome pressure values were obtained by injecting blood from the bone through the muscle. To enable ACS assessment by a hand-held indentation device we combined three main components: a load cell, a linear actuator and a 3-axis accelerometer. Dynamic tests were performed at a frequency of 0.5 Hz and by applying an amplitude of 0.5 mm. Another method used to observe the differences in the mechanical properties inside the leg was a 3D Digital Image Correlation (3D-DIC). Videos were taken from two different positions of the pig's leg at different pressure values: 0 mmHg, 15 mmHg and 40 mmHg. Two strains along the x axis (Exx) and y axis (Eyy) were measured. Between the two pressure cases (15 mmHg and 40 mmHg) a clear deformation of the model is visible. In fact, the bigger the pressure, the more visible the increase in strain is. In our animal model, local muscle pressures reached values higher than 40 mmHg, which correlate with observed human physiology in ACS. In our presentation we will share our dynamic indentation results on this model to demonstrate the sensitivity of our measurement techniques. Compartment syndrome is recognised as needing improved clinical management tools. Our approach provides both a model that reflects physiological behaviour of ACS, and a method for in-situ non-invasive assessment and monitoring.
Jellyfish collagens exhibit auspicious perspectives for tissue engineering applications primarily due to their outstanding compatibility with a wide range of cell types, low immunogenicity and biodegradability. Furthermore, derived from a non-mammalian source, jellyfish collagens reduce the risk of disease transmission, minimising therefore the ethical and safety concerns. The current study aims to investigate the potential of 3-dimensional jellyfish collagen sponges (3D-JCS) in promoting bone tissue regeneration. Both qualitative and quantitative analyses were performed in order to assess adhesion and proliferation of MC3T3 cells on 3D-JCL, as well as cell migration and bone-like ECM production. Histological and fluorescent dyes were used to stain mineral deposits (i.e. Alizarin Red S (ARS), Von Kossa, Tetracycline hydrochloride) while images were acquired using optical and confocal microscopy. Qualitative data indicated successful adhesion and proliferation of MC3T3 cells on the 3D-JCS as well as cell migration along with ECM production both on the inner and outer surface of the scaffolds. Moreover, quantitative analyses indicated a four-fold increase of ARS uptake between 2- and 3-dimensional cultures (N=3) as well as an eighteen-fold increase of ARS uptake for the 3D-JCS (N=3) when cultured in osteogenic conditions compared to control. This suggests the augmented osteogenic potential of MC3T3 cells when cultured on 3D-JCS. Nevertheless, the cell-mediated mineral deposition appeared to alter the mechanical properties of the jellyfish collagen sponges that were previously reported to exhibit low mechanical properties (compressive modulus: 1-2 kPa before culture). The biocompatibility, high porosity and pore interconnectivity of jellyfish collagen sponges promoted adhesion and proliferation of MC3T3 cells as well as cell migration and bone-like ECM production. Their unique features recommend the jellyfish collagen sponges as superior biomaterial scaffolds for bone tissue regeneration. Further studies are required to quantify the change in mechanical properties of the cell-seeded scaffolds and confirm their suitability for bone tissue regeneration. We predict that the 3D-JCS will be useful for future studies in both bone and bone-tendon interface regeneration. Acknowledgments This research has been supported by a Medical Research Scotland Studentship award (ref: -50177-2019) in collaboration with Jellagen Ltd.
Senescent chondrocyte and subchondral osteoclast overburden aggravate inflammatory cytokine and pro-catabolic proteinase overproduction, accelerating extracellular matrix degradation and pain during osteoarthritis (OA). Fibronectin type III domain containing 5 (FNDC5) is found to promote tissue homeostasis and alleviate inflammation. This study aimed to characterize what role Fndc5 may play in chondrocyte aging and OA development. Serum and macroscopically healthy and osteoarthritic cartilage were biopsied from patients with knee OA who received total knee replacement. Murine chondrocytes were transfected with Fndc5 RNAi or cDNA. Mice overexpressing Fndc5 (Fndc5Tg) were operated to have destabilized medial meniscus mediated (DMM) joint injury as an experimental OA model. Cellular senescence was characterized using RT-PCR analysis of p16INK4A, p21CIP1, and p53 expression together with ß-galactosidase activity staining. Articular cartilage damage and synovitis were graded using OARSI scores. Osteophyte formation and mechanical allodynia were quantified using microCT imaging and von Frey filament, respectively. Osteoclast formation was examined using tartrate-resistant acid phosphatase staining. Senescent chondrocyte and subchondral osteoclast overburden together with decreased serum FNDC5 levels were present in human osteoarthritic cartilage. Fndc5 knockdown upregulated senescence program together with increased IL-6, MMP9 and Adamts5 expression, whereas Alcian blue-stained glycosaminoglycan production were inhibited. Forced Fndc5 expression repressed senescence, apoptosis and IL-6 expression, reversing proliferation and extracellular matrix production in inflamed chondrocytes. Fndc5Tg mice showed few OA signs, including articular cartilage erosion, synovitis, osteophyte formation, subchondral plate sclerosis and mechanical allodynia together with decreased IL-6 production and few senescent chondrocytes and subchondral osteoclast formation during DMM-induced joint injury. Mechanistically, Fndc5 reversed histone H3K27me3-mediated IL-6 transcription repression to reduce reactive oxygen species production. Fndc5 loss correlated with OA development. It was indispensable in chondrocyte growth and anabolism. This study sheds light onto the anti-ageing and anti-inflammatory actions of Fndc5 to chondrocytes; and highlights the chondroprotective function of Fndc5 to compromise OA.
Senescent bone cell overburden accelerates osteoporosis. Epigenetic alteration, including microRNA signalling and DND methylation, is one of prominent features of cellular senescence. This study aimed to investigate what role microRNA-29a signalling may play in the development of senile osteoporosis. Bone biopsy and serum were harvested from 13 young patients and 15 senior patients who required spine surgery. Bone mass, microstructure, and biomechanics of miR-29a knockout mice (miR-29aKO) and miR-29a transgenic mice (miR-29aTg) were probed using mCT imaging and three-point bending material test. Senescent cells were probed using senescence-associated b-galactosidase (SA-b-gal) staining. Transcriptomic landscapes of osteoblasts were characterized using whole genome microarray and KEGG bioinformatics. miR-29a and senescence markers p16INK4a, p21Waf/cipl and inflammatory cytokines were quantified using RT-PCR. DNA methylome was probed using methylation-specific PCR and 5-methylcytosine immunoblotting.Introduction and Objective
Materials and Methods
Chronic glucocorticoid use causes osteogenesis loss, accelerating the progression of osteoporosis. Histone methylation is shown to epigenetically increase repressive transcription, altering lineage programming of mesenchymal stem cells (MSC). This study is undertaken to characterize the action of histone demethylase UTX to osteogenic lineage specification of bone-marrow MSC and bone integrity upon glucocorticoid treatment. Bone-marrow MSC were incubated in osteogenic medium containing supraphysiological dexamethasone. Osteogenic gene expression and mineralized nodule formation were probed using RT-PCR and von Kossa staining. The enrichment of trimethylated lysine 27 at histone 3 (H3K27me3) in Dkk1 promoter was quantified using chromatin immunoprecipitation-PCR. Bone mass and trabecular morphometry in methylprednisolone-treated skeletons were quantified using microCT analysis. Supraphysiological dexamethasone decreased osteogenic genes Runx2 and osteocalcin expression and mineralized matrix production along with reduced UTX expression in MSC. Forced UTX expression attenuated the glucocorticoid-mediated loss of osteogenic differentiation, whereas UTX knockdown provoked osteogenesis loss and cytoplasmic oil overproduction. UTX demethylated H3K27 and reduced the glucocorticoid-mediated the H3K27 enrichment in Dkk1 promoter, reversing beta-catenin signal, but downregulating Dkk1 production by MSC. In vivo, treatment with UTX inhibitor GSK-J4 significantly suppressed bone mineral density, trabecular volume, and thickness along with porous trabecular, fatty marrow and disturbed beta-catenin/Dkk1 histopathology comparable with glucocorticoid-induced osteoporosis condition. This study offers a productive insight into how UTX protects MSC from methylated histone-mediated osteogenesis repression in the development of glucocorticoid-induced osteoporosis.
Fatty marrow and bone loss are prominent pathologic features of osteoporosis. DNA hypermethylation shifts mesenchymal stem cells towards adipocytes impairing bone formation. Brown adipocytes produce growth factors advantageous to osteogenesis, whereas white adipocytes secrete pro-inflammatory cytokines deleterious to bone homeostasis. We assess DNA methylation inhibitor action to brown and white adipocyte formation in marrow fat of osteoporotic skeletons. Osteoporotic skeletons in mice were induced by glucocorticoid, ovariectomy or ageing. Marrow adipose volume and bone structure were quantified using OsO4 contrast-μCT imaging. Brown and white adipocytes were probed using immunostaining, RT-PCR and primary bone-marrow mesenchymal stem cell cultures. Abundant marrow fat and spare trabecular bone existed in osteoporotic skeletons. Osteoporosis increased expressions of general adipogenic markers PPARγ2 and FABP4 and white adipocyte markers TCF21 and HOXc9, whereas expressions of brown adipocyte markers PGC-1α and UCP-1 and osteogenic markers Runx2 and osteocalcin were significantly decreased. Number of UCP-1 immunostaining-positive brown adipocytes also reduced in osteoporotic bone.
When joints sustain injury, the release of inflammation cytokines can cleavage matrix proteins and result in cartilage degradation and the subsequent osteoarthritis. RNA therapeutics emerging recently is a very promising approach to efficiently and specifically inhibit disease gene expression. However, the major challenge is how to deliver therapeutic RNA into joint and cartilage. Janus base nanotubes are self-assembled from synthetic Janus bases inspired from DNA base pairs. Based on the charge interaction, we are able to “sandwich” small RNAs among Janus base nanotubes to form tiny, nano-rod shaped delivery vehicles. Such vehicles can be engineered into different sizes and shapes. We have found that short and slim morphologies can greatly increase their penetration to extracellular matrix and delivery into “difficult-to-reach” tissues, such as cartilage and brain. Moreover, by delivering therapeutic siRNA, we have demonstrated its high-efficacy in inhibiting expression of an inflammatory regulator, Interleukin-1 receptor (IL-1R) in articular cartilage. Moreover, the inhibition effect is long-lasting so that joint inflammation and cartilage degradation caused by meniscus injury are greatly inhibited in a mouse model. Therefore, the Janus base nanotubes present a great potential in engineering into nano-structures for RNA delivery. Such approach may become an effective therapeutic against joint inflammation and arthritis.
Long-term glucocorticoid treatment increases incidence of osteoporotic or osteonecrotic disorders. Excessive bone loss and marrow fat accumulation are prominent features of glucocorticoid-induced osteoporosis. MicroRNA-29 (miR-29) family members reportedly modulate lineage commitment of stem cells. This study was undertaken to define the biological roles of miR-29a in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Osteoblast-specific miR-29a transgenic mice (Tg) driven by osteocalcin promoter (C57BL/6JNarl-TgOCN-mir29a) or wild-type (WT) mice were given methylprednisolone. Bone mass, trabecular and cortical bone microarchitecture were assessed by μCT. Comparative mRNA and protein expression was quantified by RT-PCR and immunoblotting. Primary bone-marrow mesenchymal cells were isolated for elucidating ex vivo osteogenic and adipogenic differentiation capacity.Background
Methods
Epigenetic regulation of gene transcription affects metabolism of chondrocytes and synovial fibroblasts and is associated with the prevalence of osteoarthritis (OA) of knees. Histone lysine demethylase (KDMs) reportedly modulates tissue homeostasis and deterioration. This study investigated whether KMD6a inhibitor treatment affected the joint injuries in the progression of OA. Collagenase-induced OA knees in mice were intra-articular administered with KDM6a inhibitor GSK-J4. Walking patterns and footprints of affected animals were detected by Catwalk. Articular cartilage injury was quantified by OARSI scoring; and subchondral bone microstructure was analysed by μCT imaging. Histopathology and mRNA expression of cartilage, fibrosis and bone matrices in joint micro-compartments were detected by histomorphometry and quantitative RT-PCR. Methylation states of chondrogenic transcription factor SOX9 promoter was detected by methylation-specific PCR and chromatin immuno-precipitation.Background
Methods
This is the first ever study to report the successful elimination of malignant cells from salvaged blood obtained during metastatic spine tumour surgery using a leucocyte depletion filter. Catastrophic bleeding is a significant problem in metastatic spine tumour surgery (MSTS). However, intaoperative cell salvage (IOCS) has traditionally been contraindicated in tumour surgery because of the theoretical concern of promoting tumour dissemination by re-infusing tumour cells into the circulation. Although IOCS has been extensively investigated in patients undergoing surgery for gynaecological, lung, urological, gastrointestinal, and hepatobiliary cancers, to date, there is no prior report of the use of IOCS in MSTS. We conducted a prospective observational study to evaluate whether LDF can eliminate tumour cells from blood salvaged during MSTS.Summary
Introduction
Our meta-analysis showed that pooled mean blood loss during spinal tumour surgeries was 2180 ml. Standardised methods of calculating and reporting intra-operative blood loss are needed as it would be beneficial in the pre-operative planning of blood replenishment during surgery. The vertebral column is the commonest site of bony metastasis, accounting for 18,000 new cases in North America yearly. Patients with spinal metastasis are often elderly, have compromised cardiovascular status, poor physiological reserve and altered immune status, all of which render them more susceptible to the complications of intra-operative blood loss and associated transfusion. Currently no consensus exists regarding the expected volume of blood lost during metastatic spine tumour surgery with various papers quoting anywhere between 1L to 6L. Knowledge of the expected blood loss prior to surgery however is important as it facilitates pre-operative planning, intra- and post-operative management of fluid balance and blood transfusion. We conducted a meta-analysis of published literature on spine tumour surgery to answer the question: “What is the expected blood loss in major spinal tumour surgery for metastatic spinal disease?”Summary
Introduction
There is emerging evidence of successful application of IOCS and leucocyte depletion filter in removing tumour cells from blood salvaged during various oncological surgeries. Research on the use of IOCS-LDF in MSTS is urgently needed. Intra-operative cell salvage (IOCS) can reduce allogeneic blood transfusion requirements in non-tumour related spinal surgery. However, IOCS is deemed contraindicated in metastatic spine tumor surgery (MSTS) due to risk of tumour dissemination. Evidence is emerging from different surgical specialties describing the use of IOCS in cancer surgery. We wanted to investigate if IOCS is really contraindicated in MSTS. We hereby present a systematic literature review to answer the following questions: 1. Has IOCS ever been used in MSTS? 2. Is there any evidence to support the use of IOCS in other oncologic surgeries?Summary
Introduction
Neurological deficits resulting from spinal cord compression occur infrequently. When presented with neurological compromise, the most common management was radiotherapy, with surgery only being offered to patients who developed neurological deficit or pathological fracture resulting in unresolved severe pain post radiotherapy. Nasopharyngeal carcinoma has been reported to have a higher incidence of distant metastases to the spine. This study was conducted to evaluate the incidence, presentation and management of neurological involvement related to spinal metastasis from nasopharyngeal carcinoma.Summary
Introduction
The patellofemoral joint is an important source of symptoms in osteoarthritis of the knee. We have used a newly designed surgical model of patellar strengthening to induce osteoarthritis in BALB/c mice and to establish markers by investigating the relationship between osteoarthritis and synovial levels of matrix metalloproteinases (MMPs). Osteoarthritis was induced by using this microsurgical technique under direct vision without involving the cavity of the knee. Degeneration of cartilage was assessed by the Mankin score and synovial tissue was used to determine the mRNA expression levels of MMPs. Irrigation fluid from the knee was used to measure the concentrations of MMP-3 and MMP-9. Analysis of cartilage degeneration was correlated with the levels of expression of MMP. After operation the patellofemoral joint showed evidence of mild osteoarthritis at eight weeks and further degenerative changes by 12 weeks. The level of synovial MMP-9 mRNA correlated with the Mankin score at eight weeks, but not at 12 weeks. The levels of MMP-2, MMP-3 and MMP-14 mRNA correlated with the Mankin score at 12 weeks. An increase in MMP-3 was observed from four weeks up to 16 weeks. MMP-9 was notably increased at eight weeks, but the concentration at 16 weeks had decreased to the level observed at four weeks. Our observations suggest that MMP-2, MMP-3 and MMP-14 could be used as markers of the progression of osteoarthritic change.