header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

MICRORNA-29 MITIGATES GLUCOCORTICOID-INDUCED BONE LOSS AND MARROW ADIPOSITY

European Orthopaedic Research Society (EORS) 2015, Annual Conference, 2–4 September 2015. Part 1.



Abstract

Background

Long-term glucocorticoid treatment increases incidence of osteoporotic or osteonecrotic disorders. Excessive bone loss and marrow fat accumulation are prominent features of glucocorticoid-induced osteoporosis. MicroRNA-29 (miR-29) family members reportedly modulate lineage commitment of stem cells. This study was undertaken to define the biological roles of miR-29a in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis.

Methods

Osteoblast-specific miR-29a transgenic mice (Tg) driven by osteocalcin promoter (C57BL/6JNarl-TgOCN-mir29a) or wild-type (WT) mice were given methylprednisolone. Bone mass, trabecular and cortical bone microarchitecture were assessed by μCT. Comparative mRNA and protein expression was quantified by RT-PCR and immunoblotting. Primary bone-marrow mesenchymal cells were isolated for elucidating ex vivo osteogenic and adipogenic differentiation capacity.

Results

Decremented miR-29a expression was associated with severe skeletal deterioration and excessive marrow adipogenesis in glucocorticoid-induced osteoporosis bone tissue. Tg mice had high bone mass, spacious trabecular bone and thick cortical bone microstructure. Tg mice also had modest responses to the deleterious actions of glucocorticoid on trabecular microstructure and histomorphological characteristics, mineral acquisition and attenuated marrow fat deposition and osteoclast resorption. Ex vivo, miR-29a overexpression promoted bone-marrow mesenchymal progenitor cells differentiation towards osteogenic cells and away from adipogenic lineage cells. Mechanistically, miR-29a via inhibiting histone deacetylase 4 (HDAC4) actions restored acetylation states of osteogenic regulators Runx2 and β-catenin and decreased osteoclastogenic factor RANKL and adipokine leptin expression in bone microenvironments.

Conclusions

Glucocorticoid suppression of miR-29a disintegrates the homeostasis between osteogenic and adipogenic activities, thereby impairs bone formation and skeletal integrity. By suppressing HDAC4, miR-29a stabilizes Runx2 and β-catenin signalling that counteracts the adverse effects of glucocorticoid on bone mass and marrow adiposity. This study unveils the anabolic roles of miR-29a in the progression of glucocorticoid-induced bone loss. Sustained miR-29a action is beneficial for protecting against osteoporosis and excessive marrow adipogenesis.

Level of evidence

I