Objectives. Recently, the field of
Currently, fibrin glue obtained from fibrinogen and thrombin of human and animal blood are widely investigated to use as injectable hydrogel for
A major obstacle in biofabrication is replicating the organization of the extracellular matrix and cellular patterns found in anisotropic tissues within bioengineered constructs. While magnetically-assisted 3D bioprinting techniques have the potential to create scaffolds that mimic natural biological structures, they currently lack the ability to accurately control the dispersion of magnetic substances within the bioinks without compromising the fidelity of the intended composite. To overcome this dichotomy, the concepts of magnetically- and matrix-assisted 3D bioprinting are combined here. This method preserves the resolution of printed structures by keeping low viscosity bioinks uncrosslinked during printing, which allows for the arrangement of magnetically-responsive microfibers without compromising the structural integrity of the design. Solidification is induced after the microfibers are arranged in the desired pattern. Furthermore, the precise design of these magnetic microfillers permits the utilization of low levels of inorganic materials and weak magnetic field strengths, which reduces the potential risks that may be associated with their use. The effectiveness of this approach is evaluated in the context of tendon
The key factors in
Skeletal muscle
Successful anterior cruciate ligament (ACL) reconstructions strive a firm ligament-bone integration. Therefore, the aim of this study was to address in more detail the enthesis as the thriphasic bone attachment of the ACL using a
Purpose: The purpose of our
Background. Auxetic materials have a negative poisons ratio, and a number of native biological tissues are proposed to possess auxetic properties. One such tissue is annulus fibrosus (AF), the fibrous outer layers of the intervertebral disc (IVD). However, few studies to date have investigated the potential of these materials as
Introduction. In
Bottom-up
Organ and tissue decellularisation are promising approaches for the generation of scaffolds for tissue regeneration since these materials provides the accurate composition and architecture for the specific tissues. Repopulation of the devitalized matrixes is the most critical step and a challenge, especially in dense tissues such as cartilage. To overcome this difficulty, several chemical and mechanical strategies have been developed. Chemical extraction targeting specific matrix components such as elastin, makes auricular cartilage accessible for cells via channels originating from the elastic fiber network. However, chemical treatment for glycosaminoglycan removal is not sufficient to allow cell ingrowth in articular cartilage. As alternative, laser perforation has been developed allowing to engrave fine structures with controlled size, distance and depth, with reproducibility and high throughput. Two of the most commonly used laser technologies used in the medical field, the CO. 2. and femtosecond laser, were applied to hyaline cartilage with very different structural effect. Within this talk, the structuralizing possibilities of laser and enzymatic treatments, the effect on the matrix and the general advantages and disadvantages for
By definition, a smart biomaterial is a material, such as a ceramic, alloy, gel or polymer, that can convert energy from one form into another by responding to a change in a stimulus in its environment. These stimuli may involve temperature, pH, moisture, or electric and magnetic fields. In particular, thermoresponsive biomaterials have been successfully employed to host mammalian cells with a view to musculoskeletal
Current issues being debated in ACL reconstruction include injury prevention, graft choice, graft positioning, graft fixation, graft remodelling and rehabilitation.
Biodegradable porous scaffolds play an important role in
Hyaline cartilage and immature nucleus pulposus possess similar macromolecules in their extracellular matrix, and there is no unique molecular marker to distinguish the two tissues. We show that in normal disc (fifteen to twenty-five years old), the GAG to hydroxyproline ratio (proteoglycan to collagen ratio) within the nucleus pulposus is approximately 28:1. However, the GAG to hydroxyproline ratio within hyaline cartilage of the same group is 2.5:1. This information is important in identifying stem cell conversion to a nucleus pulposus cell phenotype rather than a chondrocyte phenotype for
Collagen materials are extensively used in regenerative medicine. However, they still present limitations such as a mono-domain composition and poor mechanical properties. On the other hand, tissue grafts overcome most of these limitations. In addition, the potential of tissue grafts in musculoskeletal