header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

ELECTROMECHANICAL MICROENVIRONMENTS FOR NOVEL TISSUE ENGINEERING STRATEGIES

The European Orthopaedic Research Society (EORS) 2018 Meeting, PART 3, Galway, Ireland, September 2018.



Abstract

Tissue engineering and regenerative medicine are increasingly taking advantage of active materials, allowing to provide specific clues to the cells. In particular, the use of electroactive polymers that deliver electrical signals to the cells upon mechanical solicitation, open new scientific and technological opportunities, as they in fact mimic signals and effects present in living tissues, allowing the development of suitable microenvironments for tissue regeneration. In fact, electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, indicating their requirement for proper tissue regeneration. Piezoelectric polymers have already shown strong potential for novel tissue engineering strategies, once they can account for the existence of piezoelectricity within some specific tissues and also can modulate the electrical signals existing in tissue development and function. In this context, this talk reports on piezoelectric and magnetoelectric materials used for tissue engineering applications. The most used materials and morphologies for tissue engineering strategies are reported, together with the need of novel bioreactor designs allowing to take full advantage of those materials. Further, the main achievements, challenges and future needs for research and actual therapies will be presented and discussed.


Email: