Advertisement for orthosearch.org.uk
Results 1 - 20 of 301
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 140 - 143
1 Nov 2013
Scott RD

At least four ways have been described to determine femoral component rotation, and three ways to determine tibial component rotation in total knee replacement (TKR). Each method has its advocates and each has an influence on knee kinematics and the ultimate short and long term success of TKR. Of the four femoral component methods, the author prefers rotating the femoral component in flexion to that amount that establishes a stable symmetrical flexion gap. This judgement is made after the soft tissues of the knee have been balanced in extension.

Of the three tibial component methods, the author prefers rotating the tibial component into congruency with the established femoral component rotation with the knee is in extension. This yields a rotationally congruent articulation during weight-bearing and should minimise the torsional forces being transferred through a conforming tibial insert, which could lead to wear to the underside of the tibial polyethylene. Rotating platform components will compensate for any mal-rotation, but can still lead to pain if excessive tibial insert rotation causes soft-tissue impingement.

Cite this article: Bone Joint J 2013;95-B, Supple A:140–3.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 28 - 28
1 Oct 2016
Holloway N Deakin A Picard F
Full Access

Since the publication by Berger in 1993, many total knee replacements (TKR) have been measured using his technique to assess component rotation. Whereas the femoral landmarks have been showed to be accurate and precise, the use of the tibial tuberosity to ascertain the true tibial orientation is more controversial. The goal of this study was to identify a new anatomical landmark to measure tibial component rotation. 211 CTs performed after TKR were reviewed. The authors noticed that the lateral cortex of the tibia below the tibial plateau component was flat over a depth of approximately 10mm. A protocol to measure tibial rotation in relation to this landmark was developed: the slice below the tibial plateau was identified; a primary line was drawn over the straight lateral cortex of the tibia; a perpendicular to this line defined the reference axis (A); the posterior tibial component axis was drawn (B); the angle between A and B was measured with internal rotation being negative and external positive. Two independent observers measured 31 CTs twice each and Intraclass Correlation Coefficients (ICC) were calculated for intra- and inter-observer error. The 211CTs were measured according to Berger's and this protocol. Intra-observer ICCs were 0.812 for Observer1 and 0.806 for Observer2. The inter-observer ICCs were 0.699 for Reading1 and 0.752 for Reading2. The Berger protocol mean tibial rotation was 9.7°±5.5° (−29.0° to 5.2°) and for the new landmark 0°±5.4° (−18.6° to 14°). This new tibial landmark appeared easy to identify and intra- and inter-observer errors were acceptable. The fact that the mean tibial rotation was 0° makes this landmark attractive. A consistent easily identified landmark for tibial rotation may allow for improvement in component rotation and the diagnosis of dissatisfaction after TKR. Further studies are under way to confirm the relevance of this landmark


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 444 - 445
1 Oct 2006
Karadaglis D Varma R Lahoti O Groom G
Full Access

We studied the change in the axial rotation of the tibia at different levels of knee flexion after Knee Replacement using navigation systems. We reviewed the knee kinematic data of 36 consecutive patients (15 males and 21 females) who underwent elective knee replacement (Scorpio/Stryker) at King’s College Hospital. All data were generated using the navigation TKR trackers and software of a knee replacement system. All preoperative data obtained before any soft tissue release. We studied the tibial rotation at 30°, 60° and 90° of knee flexion. All operations were performed by consultant orthopaedic surgeons. We used the Wilcoxon non parametric two sample test for statistical analysis. The average tibial internal rotation upon knee flexion was 9.4° preoperatively and was reduced to 5.3° (mean 7.3°) post operatively. Most of the change (80%) occurred within the first 30° of flexion (p< 0.001). Postoperatively 38% of the studied knees had the screw home mechanism preserved. 52.7% had a mixed pattern of both internal and external rotation of the tibia and three knees (8%) had a reversed rotation of the tibia. The abnormal screw home pattern was preserved in 16 of the postoperative joints (46%). One knee was found postoperatively with external tibial rotation in all flexion increments. The abnormal pattern of tibial rotation was not improved following a navigation arthroplasty. We found that computer navigated TKR reduces significantly the tibial rotation and the replaced knee joint does not behave as a hinge joint. Pre-existing abnormal tibial rotation patterns were not improved postoperatively


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 189 - 189
1 Mar 2010
Barenius B Webster K Feller J
Full Access

It has been suggested that excessive tibial rotation during pivoting tasks is not controlled by single bundle ACL reconstruction (ACLR). This may be partly explained by graft orientation in the coronal plane. The purpose of this study was to assess tibial rotation after ACLR with an obliquely placed hamstring graft. 18 patients were evaluated. All patients had undergone a primary ACLR for an isolated ACL injury within 6 months of injury. All had a 4 strand graft, either semi-tendinosus alone (ST) or semitendinosus and gracilis (STGR) – 9 in each group, each with 2 females and 7 males. Follow-up was at least 2 years postoperatively and all patients had made a good functional recovery and returned to their pre-injury sporting activities. Evaluation consisted of IKDC 2000, instrumented laxity testing, and 3D motion analysis to record tibial rotation when subjects descended stairs and pivoted 90 degrees on landing using a similar protocol to one which has previously been reported. All patients had made an excellent recovery (mean IKDC score 100 for both groups) and there were no significant differences between the ST and STGR subjects for any of the background variables including anterior knee laxity. There were no differences in the maximal tibial rotational angle between the operated (mean: 20°, range: 10°– 27°) and non operated limb (mean: 21°, range: 6°– 42°). There was no significant difference between the graft types (ST: 20°, STGR: 21°). Females had greater tibial rotation on both the operated and non-operated sides compared to males. Contrary to previous reports, we found restoration of normal tibial rotation during the pivoting task after a single bundle ACLR. The lack of difference between the ST and STGR groups suggests that this restoration of normal tibial rotation is due to static rather than dynamic restraints. We suggest that it probably reflects the more horizontal graft orientation in the coronal plane for patients in the current study compared to that reported in previous studies


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 62 - 62
1 Jan 2016
Ishida K Sasaki H Toda A Kodato K Matsumoto T Takayam K Kuroda R Kurosaka M Shibanuma N
Full Access

Background. Data on varus-valgus and rotational profiles can be obtained during navigated total knee arthroplasty (TKA). Such intraoperative kinematic data might provide instructive clinical information for refinement of surgical techniques, as well as information on the anticipated postoperative clinical outcomes. However, few studies have compared intraoperative kinematics and pre- and postoperative clinical outcomes; therefore, the clinical implications of intraoperative kinematics remain unclear. In clinical practice, subjects with better femorotibial rotation in the flexed position often achieve favorable postoperative range of motion (ROM); however, no objective data have been reported to prove this clinical impression. Hence, the present study aimed to investigate the correlation between intraoperative rotation and pre- and postoperative flexion angles. Materials and Methods. Twenty-six patients with varus osteoarthritis undergoing navigated posterior-stabilized TKA (Triathlon, Stryker, Mahwah, NJ) were enrolled in this study. An image-free navigation system (Stryker 4.0 image-free computer navigation system; Stryker) was used for the operation. Registration was performed after minimum soft tissue release and osteophyte removal. Then, maximum internal and external rotational stress was manually applied on the knee with maximum extension and 90° flexion by the same surgeon, and the rotational angles were recorded using the navigation system. After knee implantation, the same rotational stress was applied and the rotational angles were recorded again. In addition, ROM was measured before surgery and at 1 month after surgery. The correlation between the amount of pre- and postoperative tibial rotation and ROM was statistically evaluated. Results. The amount of tibial rotation at registration was positively correlated with that after surgery (p < 0.05). Although the amount of tibial rotation at maximum extension was not correlated with ROM, the amount of rotation at 90° flexion at registration was positively correlated with pre- and postoperative ROM (p < 0.05). Moreover, the amount of tibial rotation at 90° flexion was positively correlated with postoperative ROM (p < 0.05). Conclusion. It is well known that preoperative ROM affects postoperative ROM. Our results showed that better tibial rotation at 90° flexion predicts favorable postoperative ROM, suggesting that flexibility of the surrounding soft tissues as well as the quadriceps muscles is an important factor for obtaining better ROM. Further evaluation of navigation-based kinematics during TKA surgery may provide useful information on ROM


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 397 - 397
1 Sep 2009
Casino D Martelli S Iacono F Zaffagnini S Lopomo N Bignozzi S Marcacci M
Full Access

Information on knee kinematics during surgery is currently lacking. The aim of this study is to describe intra-operative kinematics evaluations during uni-compartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) by mean of a navigation system. Anatomical and kinematic data were acquired by Kin-Nav navigation system and analysed by a dedicated elaboration software developed at our laboratory. The study was conducted on 20 patients: 10 patients undergoing mini-invasive UKA and 10 patients undergoing posterior-substituting-rotating-platform TKA. In both group of patients the surgeon performed passive knee flexion immediately before and immediately after the prosthetic implant. Pattern and amount of internal/external tibial rotation in function of flexion were computed and significant changes between before and after implant were evaluated adopting Student’s t-test (significant level p=0.05). UKA implant did not significantly change the pattern of internal/external tibial rotation, nor the total magnitude of tibial rotation (15.75°±7.27°) during range of flexion (10°–110°), compared to pre-operative values (17.87°±7.34°, p=0.25). Magnitude of tibial rotation in TKA group before surgery (8.00°±3.67°) was significantly less compared to UKA patients and did not changed significantly after implant (5.96°±4.88°, p=0.09). Pattern of rotation before and after TKA implant were different between each other and between pattern in UKA patients both before and after implant. Intra-operative evaluations on tibial rotation during knee flexion confirmed some assumptions on knee implants from post-operative methods and suggest a more extensive use of surgical navigation systems for kinematic studies


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 423 - 423
1 Dec 2013
Meftah M Hwang K Ismaily S Incavo S Mathis K Noble P
Full Access

Introduction:. Proper rotational alignment of the tibial component is a critical factor in the outcome of total knee arthroplasty (TKA), and misalignment has been implicated as a major contributing factor to several mechanisms of TKA failure. In this study we examine the relationship between bony and soft tissue tibial landmarks against the knee motion axis (plane that best approximates tibiofemoral motion through range of motion). Methods:. The kinematic motions of 16 fresh-frozen lower limb specimens were analyzed in simulated lunging and squatting. All the tendons of the quadriceps and hamstrings were independently loaded to simulate a lunging or squatting maneuver. All specimens underwent CT scan and the 3D position of the knee was virtually reconstructed. Ten anatomic axes were identified using both the intact tibia and the resected tibial surface. Two axes were normal vectors to either the medial-lateral plateau center or the posterior tibial surface. Seven axes were defined between the tibial tubercle (the most prominent point, center of the tubercle, or medial third of the tubercle) and soft tissue landmarks of the tibia (the medial insertion of the patellar tendon, the center of the PCL and ACL, and the tibial spines). The last axis was the Knee Motion Axis (KMA), which was defined as the longitudinal axis of the femur from 30 to 90 degrees of flexion. Results:. The closest approximation of the KMA was provided by the axis from the PCL to Medial Tibial Spine Axis, which was internally rotated 1.9 ± 7.6 degrees (Table – 1). The closest axis to the KMA in external rotation was the axis from the tibial plateau center to the medial third of the tibial tubercle, which was externally rotated 2.8 ± 4.3 degrees. The most precisely located constant axis was from the center of the tibia to the center of the tibial tubercle, which was externally rotated by 14.9 ± 3.7 degrees. Conclusions:. The line connecting the center of the PCL and the mid-point between the medial and lateral tibial spines was the closest to the functional tibial rotation. Though no individual landmark exactly correlated with the KMA in all knees, we found that the average anteroposterior motion of the femur with the tibia from 30 to 90 degrees of the femur could be consistently described by these landmarks, and that the addition of soft-tissue landmarks to prior bony topography can provide reliable indications to the location of the KMA


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_II | Pages 186 - 186
1 Apr 2005
Laurà G Usellini E Milani R
Full Access

Tibial and femoral deformities might cause patellofemoral problems, but they do not have to be modified every time to obtain good results. We have evaluated external tibial rotation characterised by an external tibial deformity in varus, worsening in parallel feet position. In these patients the only surgical treatment is tibial osteotomy, justified by a positive effect on the knee joint mechanics. From 1990 to 2002 we performed 25 derotation tibial osteotomies as an isolated procedure or associated with a closed wedge osteotomy. We reviewed 15 patients (16–28 years old at surgery) with special reference to pain, aesthetic criteria and functional assessments, and we reported possible negative effects of derotation (recurvation and external tibial rotation). In all the patients we found an external rotation higher than standard range and moderate varus. All patients had remission of pain; this was complete in five and partial in six. Ten patients showed an increased tibial rotation and eight of those showed even recurvation without functional sequelae. At 2–12 years of follow-up, our results are satisfactory


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 386 - 386
1 Jul 2011
Sampath S Voon S Davies H
Full Access

There have been mixed reports of the contribution of the anterior cruciate ligament (ACL) to the overall envelope of tibial rotational stability. The effect of single bundle ACL reconstruction on the separate components of internal and external rotational stability respectively is also unclear. We determined the internal and external rotation, and antero-posterior movement of the knee before and after single bundle computer assisted reconstruction of the anterior cruciate ligament (ACL) in 57 patients. The Orthopilot. ®. ACL (v2) software (BBraun, Aesculap) was used. The mean overall range of tibial rotation was also significantly reduced from 30.5 degrees to 16 degrees (p< 0.0001). The mean internal rotation was significantly reduced from 16 degrees to 8 degrees (p< 0.0001). Mean external rotation was also significantly reduced from 15 degrees to 8 degrees (p< 0.0001). Unlike previous studies we did not find a greater reduction of internal rotation compared with external rotation. The mean antero-posterior movement of the tibia was significantly reduced from 12mm to 4mm (p< 0.0001). The results of this study seem to indicate that computer assisted single bundle ACL reconstruction results in a significant intraoperative improvement in both internal and external rotatory stability as well as a significant improvement in antero-posterior stability


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 137 - 137
1 Mar 2008
Schemitsch E Walker R Mckee M Waddell J
Full Access

Purpose: The purpose of this study was to examine how the “ideal” tibial nail insertion point varies with tibial rotation and to determine what radiographic landmarks can be used to identify the most suitable rotational view for insertion of a tibial intramedullary nail. Methods: Twelve cadaveric lower limb specimens with intact soft tissues around the knee and ankle joints were used. A 2.0mm Kirschner wire was placed in the center of the anatomic safe zone and centered on the tibial shaft. The leg was rotated and imaged using a fluoroscopic C-arm until the K-wire was positioned just medial to the lateral tibial spine (defined as the neutral anteroposterior radiograph). The leg was then fixed and radiographs were taken in 5 degree increments by rotating the fluoroscope internally and externally (in total, a 50 degree arc). Following this a second K-wire was placed in 5 mm increments both medially and laterally and the fluoroscope rotated until this second K-wire was positioned just medial to the lateral tibial spine. Radiographs were digitized for measurements. Results: Given the presence of a 30 degree rotational arc through which the radiograph appeared anteroposterior, it was possible to improperly translate the start point up to 15 mm. Relative external rotation of the image used for nail placement led to a medial insertion site when using the lateral tibial spine as the landmark. A line drawn at the lateral edge of the tibial plateau to bisect the fibula head correlated with an entry point that was central or up to 5 mm lateral to the ideal entry point. The use of a fibula head bisector line avoided a medial insertion point. Conclusions: Rotation of the tibia may result in up to 15 mm of translation of the start point that may be unrecognized. Relative external rotation of the film used for nail placement leads to medial insertion sites when using the lateral tibial spine as a landmark. The fibula head bisector line can be used to avoid choosing external rotation views and thus avoid medial insertion points


Purpose. We aimed to investigate whether the anterior superior iliac spine could provide consistent rotational landmark of the tibial component during mobile-bearing medial unicompartmental knee arthroplasty (UKA) using computed tomography (CT). Methods. During sagittal tibial resection, we utilized the ASIS as a rotational landmark. In 47 knees that underwent postoperative CT scans after medial UKA, the tibial component position was assessed by drawing a line tangential to the lateral wall of the tibial component. Rotation of the tibial component was measured using two reference lines: a line perpendicular to the posterior cortical rim of the tibia (angle α) and Akagi's line (angle β). Instant bearing position and posterior cruciate ligament fossa involvement were also evaluated. External rotation of the tibial component relative to each reference line and external rotation of the bearing relative to the lateral wall of the tibial component were considered positive values. Results. The mean angle α and β were 8.0 ± 6.1° (range, −4.0 – 24.3) and 8.7 ± 4.8° (range, 1.9 – 25.2), respectively. The mean instant bearing position was 4.3 ± 28.6° (range, −52.9 – 179.7). One bearing showed complete 180° rotation at 2 weeks postoperatively. Fourteen knees (29.8%) showed posterior cruciate ligament fossa involvement of the tibial resection margin. Conclusions. Due to the wide variation in, and inherent difficulty in identification of, the ASIS during the operation, it is not recommended for guidance of sagittal tibial resection during mobile-bearing medial UKA. Level of Evidence: Level IV


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 29 - 29
1 Jan 2016
Matsumoto T Takayama K Kawakami Y Ishida K Muratsu H Matsuzaki T Uefuji A Nakano N Matsushita T Kuroda R Kurosaka M
Full Access

Purpose. Surgeons sometimes encounter moderate or severe varus deformed osteoarthritic cases in which medial substantial release including semimembranosus is compelled to appropriately balance soft tissues in total knee arthroplasty (TKA). However, medial stability after TKA is important for acquisition of proper knee kinematics to lead to medial pivot motion during knee flexion. The purpose of the present study is to prove the hypothesis that step by step medial release, especially semimembranosus release, reduces medial stability in cruciate-retaining (CR) total knee arthroplasty (TKA). Methods. Twenty CR TKAs were performed in patients with moderate varus-type osteoarthritis (10° < varus deformity <20°) using the tibia first technique guided by a navigation system (Orthopilot). During the process of medial release, knee kinematics including tibial internal rotation and anterior translation during knee flexion were assessed using the navigation system at 3 points; (1) after anterior cruciate ligament resection (pre-release), (2) medial tibial and femoral osteophyte removal and release of minimum deep layer of medial collateral ligament (minimum release) and (3) release of semimembranosus (semimembranosus release). In addition, the kinematics after all prostheses implantation (semimembranosus release group) were assessed and compared with those assessed in another 20 patients in which only minimum release was performed (minimum release group). Results. Kinematic pattern in step by step medial release exhibited external tibial rotation during mid-range of flexion and then shifted to internal tibial rotation toward to 120 degrees of knee flexion (Fig. A). During 60 to 120 degrees of flexion, semimembranosus release significantly reduced the amount of internal tibial rotation compared with pre-release (Fig. 1B). Tibial anterior translation showed no significant differences among each procedure. After all prostheses implanted, the amount of tibial internal rotation during 60 to 120 degrees of knee flexion was significantly maintained in minimum release compared with semimembranosus release group (Fig. 2). Conclusions. Semimembranosus release reduces tibial internal rotation in CR TKA, suggesting that semimembranosus release should be avoided in case of moderate varus-type osteoarthritis for considering medial stability


The posterior drawer is a commonly used test to diagnose an isolated PCL injury and combined PCL and PLC injury. Our aim was to analyse the effect of tibial internal and external rotation during the posterior drawer in isolated PCL and combined PCL and PLC deficient cadaver knee. Ten fresh frozen and overnight-thawed cadaver knees with an average age of 76 years and without any signs of previous knee injury were used. A custom made wooden rig with electromagnetic tracking system was used to measure the knee kinematics. Each knee was tested with posterior and anterior drawer forces of 80N and posterior drawer with simultaneous external or internal rotational torque of 5Nm. Each knee was tested in intact condition, after PCL resection and after PLC (lateral collateral ligament and popliteus tendon) resection. Intact condition of each knees served as its own control. One-tailed paired student's t test with Bonferroni correction was used. The posterior tibial displacement in a PCL deficient knee when a simultaneous external rotation torque was applied during posterior drawer at 90° flexion was not significantly different from the posterior tibial displacement with 80N posterior drawer in intact knee (p=0.22). In a PCL deficient knee posterior tibial displacement with simultaneous internal rotation torque and posterior drawer at 90° flexion was not significantly different from tibial displacement with isolated posterior drawer. In PCL and PLC deficient knee at extension with simultaneous internal rotational torque and posterior drawer force the posterior tibial displacement was not significantly different from an isolated PCL deficient condition (p=0.54). We conclude that posterior drawer in an isolated PCL deficient knee could result in negative test if tibia is held in external rotation. During a recurvatum test for PCL and PLC deficient knee, tibial internal rotation in extension results in reduced posterior laxity


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1201 - 1203
1 Nov 2000
Karrholm J Brandsson S Freeman MAR

We studied the knees of 11 volunteers using RSA during a step-up exercise requiring extension while weight-bearing from 50° to 0°. The findings on weight-bearing flexion with and without external rotation of the tibia based on MRI were confirmed.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 121 - 121
1 May 2013
Scott R
Full Access

There are basically 4 ways advocated to determine the proper femoral component rotation during TKA: (1) The Trans-epicondylar Axis, (2) Perpendicular to the “Whiteside Line,” (3) Three to five degrees of external rotation off the posterior condyles, and (4) Rotation of the component to a point where there is a balanced symmetric flexion gap. This last method is the most logical and functionally, the most appropriate. Of interest is the fact that the other 3 methods often yield flexion gap symmetry, but the surgeon should not be wed to any one of these individual methods at the expense of an unbalanced knee in flexion. In correcting a varus knee, the knee is balanced first in extension by the appropriate medial release and then balanced in flexion by the appropriate rotation of the femoral component. In correcting a valgus knee, the knee can be balanced first in flexion by the femoral component rotation since balancing in extension almost never involves release of the lateral collateral ligament (LCL) but rather release of the lateral retinaculum. If a rare LCL release is anticipated for extension balancing, then it would be performed prior to determining the femoral rotation since the release may open up the lateral flexion gap to a point where even more femoral component rotation is needed to close down that lateral gap. It is important to know and accept the fact that some knees will require internal rotation of the femoral component to yield flexion gap symmetry. The classic example of this is a knee that has previously undergone a valgus tibial osteotomy that has led to a valgus tibial joint line. In such a case, if any of the first 3 methods described above is utilised for femoral component rotation, it will lead to a knee that is very unbalanced in flexion being much tighter laterally than medially. A LCL release to open the lateral gap will be needed, increasing the complexity of the case. My experience has shown that intentional internal rotation of the femoral component when required is well-tolerated and rarely causes problems with patellar tracking. It is also of interest to note that mathematical calculations reveal that internally rotating a femoral component as much as 4 degrees will displace the trochlear groove no more that 2–3 mm (depending on the FC size), an amount easily compensated for by undersizing the patellar component and shifting it medially those few mm. There are basically 3 ways to determine the proper tibial component rotation during TKA: (1) Anatomically cap the tibial cut surface with an asymmetric tibial component, (2) Align the tibial rotation relative to a fixed anatomic tibial landmark (most surgeons use this method and align relative to the medial aspect of the tibial tubercle), (3) Rotate the tibial component to a point where there is rotational congruency in extension between the femoral and tibial articulating surfaces. This third method must be used with fixed bearing arthroplasties (especially with conforming articulations) to avoid rotational incongruency between the components during weight-bearing that can create abnormal and deleterious torsional forces on posterior stabilised posts, insert tray interfaces and bone-cement interfaces. Rotating platform articulations can tolerate rotational mismatch unless it is to a point where the polyethylene insert rotates excessively and causes symptomatic soft tissue impingement


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 22 - 22
1 Oct 2018
Saffi M Young SW Spangehl MJ Clarke HD
Full Access

Introduction. Tibial component malrotation is associated with pain, stiffness and altered patellofemoral kinematics in total knee arthroplasty (TKA). However, accurately measuring tibial component rotation following TKA is difficult. Proposed protocols utilizing computed tomography (CT) are not well validated and can be time consuming. This study aimed to; 1) Validate and compare the reproducibility of the Berger (2D-CT) and Mayo (3D-CT) protocols; 2) Validate a simple, and potentially rapid screening measurement using an anatomical distance on 2D axial CT- the Centre of Tibial Tray to Tibial Tubercle (CTTT) distance. Methods. Rotational alignment of 70 TKA patients were evaluated by 3 independent observers using the Berger, and Mayo protocols, which have been previously described, and a new CTTT protocol (Figure 1). The inter and intra-rater interclass correlation coefficients (ICC's), mean difference between measurements and the mean measurement times were calculated. Linear regression analysis was performed to give a coefficient of determination (R2). Results. The intra-rater reliability for all 3 protocols was rated as “very good” (Mayo 0.96, Berger 0.85 and CTTT 0.85). The inter-rater reliability for the Mayo and the Berger method was rated as “very good” (0.87 and 0.83 respectively), the CTTT was rated as “good” (0.79). The Mayo method had a lower mean difference in intra-rater measurements than the Berger method (1.42° vs 2.60° p= <0.01). Comparing the CTTT to the Mayo method produced an R2 value of 0.73 indicating strong correlation. As a screening tool, 92% of patients with CTTT ≤ 6mm had < 9° of tibial component internal rotation (IR), and 93% of patients with a CTTT ≥ 10mm had ≥ 9° IR. The Mayo method takes 3 minutes, 29 seconds; Berger method: 2 minutes, 5 seconds; CTTT method: 39 seconds to perform. Conclusion. 3D CT is the gold standard for formally determining tibial component rotational alignment. The CTTT has the strongest correlation to the Mayo method, and is the least time consuming. The CTTT method can be used as a reliable, simple and rapid screening tool in daily clinical practice to assess tibial component rotational alignment following TKA, prior to formal measurement. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 10 - 10
1 Jun 2012
Baldini A Mariani PC Manfredini L Luca LD
Full Access

The anterior curve of the tibial plateau cortex represents a realiable and reproducible landmark which may help aligning the tibial component with the femoral component and the extensor mechanism. Few studies analyzed the tibial component rotational alignment during total knee arthroplasty. Malrotation can affect both patello-femoral and tibio-femoral postoperative function. We evaluated the rotational relationship between femur and tibia, and we investigated which tibial landmark consistently matches the rotation of the femoral epicondylar axis in full extension (Fig 1). Axial magnetic resonance images of 124 normal knees (statistical power 1-beta=0.8) were analyzed separately by three authors. Scanograms were obtained with the knee in full extension and with the long axis of the foot (second metatarsal bone) aligned on the neutral sagittal plane. The surgical epicondylar axis was drawn and projected over the proximal tibia and tibial tuberosity slices. Multiple anatomical tibial rotational landmarks were drawn and symmetric tibial component digital templates of different sizes were aligned according to each landmark. Alignment of the virtual tibial components was then compared to that of the projected femoral epicondylar axis (Fig 2). The best antero-posterior line to achieve rotational matching between the components was drawn on the proximal tibia slice of each patient. Results of rotation (positive = external rotation, negative = internal) relative to the epicondylar axis were (Fig 3): (a) Medial third-to the middle third of the tibial tubercle 1.2°+/−5.7, (b) Akagi's line (centre of the posterior cruciate ligament tibial insertion to the most medial part of the tibial tubercle) -11.5+/−6.5, (c) The anterior curved tibial plateau cortex (curve-on-curve matching between the tibial template and the anterior cortex) 1.0+/−2.9. Intraclass correlation coefficient resulted 0.923, 0,881, and 0.949 for the Akagi's line, Middle third of tibial tubercle, and the curve-on-curve reference respectively. The anterior curve of the tibial plateau cortex represents a realiable and reproducible landmark which may help aligning the tibial component with the femoral component and the extensor mechanism (Fig 4, 5)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 32 - 32
1 Apr 2019
Elkabbani M Haidar F Mohamed T Osman A Tarabichi S
Full Access

Introduction. Tibial component malrotation is one of the commonest causes of pain and stiffness following total knee arthroplasties, however, the assessment of tibial component malrotation on imaging is not a clear-cut. Aim. The objective of this study was to assess tibial component rotation in cases with pain following total knee replacement using MRI with metal artifact reduction technique. Methods. In 35 consecutive patients presented to our clinic between January 2016 and April 2017 with persistent unexplained moderate to severe pain for at least 6 months following total knee arthroplasties after exclusion of infection, MRI evaluation of tibial component rotation using O-MAR technique-(Metal Artifact Reduction for Orthopedic implants) to improve visualization of soft tissue and bone by reducing artifacts caused by metal implants- was done according to the technique of Berger et al. Results. 25 cases showed internal rotation of tibial component, 5 cases showed neutral rotation, 5 cases showed external rotation with presence of abnormal intraarticular fibrous bands. Conclusion. Two main conclusions are obtained from this study:. Firstly: Internal rotation of tibial component must be excluded in all cases of persistent pain following total knee replacement. Secondly: Magnetic resonance imaging with the newly developed metal artifact reduction techniques is a very useful tool in evaluating cases of unexplained pain following total knee replacement


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 109 - 109
1 Feb 2017
Kim J Han H Lee S Lee M
Full Access

Background. Rotational alignment is important for the long-term success and good functional outcome of total knee arthroplasty (TKA). While the surgical transepicondylar axis (sTEA) is the generally accepted landmark on the distal femur, a precise and easily identifiable anatomical landmark on the tibia has yet to be established. Our aim was to compare five axes on the proximal tibia in normal and osteoarthritic (OA) knees to determine the best landmark for determining rotational alignment during TKA. Methods. One hundred twenty patients with OA knees and 30 without knee OA were recruited for the study. Computed tomography (CT) images were obtained and converted through multiplanar reconstruction so the angles between the sTEA and the axes of the proximal tibia could be measured. Five AP axes were chosen: the line connecting the center of the posterior cruciate ligament(PCL) and the medial border of the patellar tendon at the cutting level of the tibia (PCL-PT), the line from the PCL to the medial border of the tibial tuberosity (PCL-TT1), the line from the PCL to the border of the medial third of the tibia (PCL-TT2), the line from the PCL to the apex of the tibia (PCL-TT3), and the AP axis of the tibial prosthesis along with the anterior cortex of the proximal tibia (anterior tibial curved cortex, ATCC). Results. In OA knees, the mean angles were less than those in normal knees for all 5 axes tested. In normal knees, the angle of the ATCC axis had the smallest mean value (1.6° ± 2.8°) and the narrowest range. In OA knees, the angle of the PCL-TT1 axis had the smallest mean value (0.3° ± 5.5°); however, the standard deviation (SD) and range were wider than that of the angle of the ATCC axis. The mean angle of the ATCC axis was larger (0.8° ± 2.7°) than the angle of the PCL-TT1 axis, but the difference was not statistically significant (P =0.461). The angle of the ATCC axis had the smallest SD and the narrowest range. Conclusion. In OA knees, the AP axis of the proximal tibia showed greater internal rotation compared with normal knees. In our study, the ATCC was found to be the most reliable and useful anatomical landmark for tibial rotational alignment in TKA


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 43 - 48
1 Jun 2020
D’Lima DP Huang P Suryanarayan P Rosen A D’Lima DD

Aims. The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. Methods. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph. Results. Axial rotation of the cutting guide induced a varus-valgus malalignment up to 1.8° (for 15° of axial rotation combined with 7° of posterior slope). Axial malrotation of tibial tray induced a substantially higher risk of coronal plane malalignment ranging from 1.9° valgus with 15° external rotation, to over 3° varus with 25° of internal rotation. Coronal alignment of the tibial cut changed by 0.07° per degree of axial rotation and 0.22° per degree of posterior slope (linear regression, R. 2. > 0.99). Conclusion. While the effect of axial malalignment has been studied, the impact on coronal alignment is not known. Our results indicate that the direction of the cutting guide and malalignment in axial rotation alter coronal plane alignment and can increase the incidence of outliers. Cite this article: Bone Joint J 2020;102-B(6 Supple A):43–48