Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 58 - 58
2 Jan 2024
Richter B
Full Access

An overview about 3D printing technology in orthopaedic applications will be given based on examples. The process from early prototypes to certified implants coming from serial production will be demonstrated also considering relevant surrounding conditions. Today's focus is mostly on orthopaedic implants, but there is a high potential for new implant-related surgical instrument solutions taking into account up-coming clinical demands and user needs accessible by actual 3D printing technologies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 59 - 59
17 Nov 2023
Yang I Buchanan R Al-Namnam N Li X Lucas M Simpson AH
Full Access

Abstract. Background. Ultrasonic cutting of bone boasts many advantages over alternatively powered surgical instruments, including but not limited to: elimination of swarf, reduced reaction forces, increased precision in cutting and reduced adjacent soft tissue damage, reduced post-operative complications such as bleeding and bone fracture, reduced healing time, reduced intra-operative noise and ease of handling. Despite ultrasonic cutting devices being well established in oral and maxillofacial surgery, applications in orthopaedic surgery are more niche and are not as well understood. The aim of this study was to investigate the cutting speed (mm/s) and cutting forces (N) of orthopaedic surgeons using a custom-designed state of the art ultrasonic cutting tool to cut fresh human bone samples. Methods. A setup based on the Robot Operating System (ROS) and AprilTag was designed to track and to record the real time position of the ultrasonic cutting tool in space. Synchronised load cell axial force readings of three separate orthopaedic surgeons during ultrasonic cutting were recorded. Each surgeon was asked to find a comfortable position that reflects as close as possible their clinical handling of a cutting instrument used in surgery, and to perform two cuts in each of three samples of human cortical bone. Bone samples were obtained following ethical approval from an institutional review board (ethics approval number: SR1342) and prior informed consent was obtained from all patients. Bone samples were extracted from the femoral neck region of three hip osteoarthritis patients. During cutting, surgeons were allowed a total cutting time of one minute and cutting was conducted using an ultrasonic tool with frequency of a 35kHz (35.7 µm peak to peak displacement amplitude) under constant irrigation using a MINIPULS® 3 Peristaltic pump (38 revolutions per minute) using Phosphate-Buffered Saline (PBS) at 25°C. From the recorded data, the average instantaneous cutting velocity was calculated and the maximum cutting force was identified. Results. All surgeons assumed a back-and-forth cutting motion, variation in the applied cutting force was observed. The average vertical cutting speed, axial cutting force and cutting depth across all surgeons and all samples was 1.64 mm/s, 1.91 N and 0.73 mm, respectively. While increasing the axial cutting force resulted in a deeper cut, overloading of the ultrasound transducer occurred when the tool advanced too quickly into the bone tissue during cutting. The exact force threshold, or the optimal speed at which the surgeon can maintain a constant force during cutting, requires further investigation. Conclusions. In this study, all surgeons cut using a back-and-forth cutting motion, with variation in the applied cutting force which may ultimately inform which clinical applications in orthopaedic engineering are most suitable for this technology. Applying too much force caused overloading of the ultrasound transducer, which is a limitation with the current cutting tool. The results from this study may facilitate the eventual uptake of ultrasonic cutting tools for application in orthopaedic surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 23 - 23
1 Mar 2021
Howgate D Oliver M Stebbins J Garfjeld-Roberts P Kendrick B Rees J Taylor S
Full Access

Abstract. Objectives. Accurate orientation of the acetabular component during a total hip replacement is critical for optimising patient function, increasing the longevity of components, and reducing the risk of complications. This study aimed to determine the validity of a novel VR platform (AescularVR) in assessing acetabular component orientation in a simulated model used in surgical training. Methods. The AescularVR platform was developed using the HTC Vive® VR system hardware, including wireless trackers attached to the surgical instruments and pelvic sawbone. Following calibration, data on the relative position of both trackers are used to determine the acetabular cup orientation (version and inclination). The acetabular cup was manually implanted across a range of orientations representative of those expected intra-operatively. Simultaneous readings from the Vicon® optical motion capture system were used as the ‘gold standard’ for comparison. Correlation and agreement between these two methods was determined using Bland-Altman plots, Pearson's correlation co-efficient, and linear regression modelling. Results. A total of 55 separate orientation readings were obtained. The mean average difference in acetabular cup version and inclination between the Vicon and VR systems was 3.4° (95% CI: −3–9.9°), and −0.005° (95% CI: −4.5–4.5°) respectively. Strong positive correlations were demonstrated between the Vicon and VR systems in both acetabular cup version (Pearson's R = 0.92, 99% CI: 0.84–0.96, p<0.001), and inclination (Pearson's R = 0.94, 99% CI: 0.88–0.97, p<0.001). Using linear regression modelling, the adjusted R. 2. for acetabular version was 0.84, and 0.88 for acetabular inclination. Conclusion. The results of this study indicate that the AescularVR platform is highly accurate and reliable in determining acetabular component orientation in a simulated environment. The AescularVR platform is an adaptable tracking system, which may be modified for use in a range of simulated surgical training and educational purposes, particularly in orthopaedic surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 36 - 36
1 Nov 2018
Vaughan T
Full Access

The complex structural arrangement of bone gives rise to anisotropic, rate-dependent failure behaviour, which varies significantly depending on tissue composition and architecture. This presents significant challenges in the development of orthopaedic surgical cutting instruments, which are required to generate sufficient forces to penetrate bone tissue, while minimizing the risk of thermal and mechanical damage to the surrounding environment. Currently, instrument designers rely heavily on empirical-based strategies to understand tool-bone interactions, with significant amounts of prototyping and validation experiments required throughout the design process. The aim of this study is to develop an experimentally-validated predictive computational model of orthopaedic cutting processes in three dimensions to understand the role of various cutting parameters on cutting forces and chip formation. An experimental model of orthogonal cutting was developed, whereby an adaptable cutting tool fixture driven by a servo-hydraulic uniaxial test machine was used to carry out high-rate cutting tests on Sawbone® trabecular bone analogues. A three-dimensional computational model was also developed using Abaqus/Explicit. The constitutive model describing material behaviour considers strain-rate and pressure-dependant yield behaviour using a Drucker-Prager elastic-plastic damage model, with Strain-hardening and rate-dependent model constants determined through dynamic uniaxial high-strain rate compression tests of material cubes. An excellent correlation between experimental and computational models was found, with the computational model accurately predicting tool cutting forces and chip development ahead of the tool during the cutting process. It was identifying that lower tool rake-angles resulted in the formation of larger discontinuous chips and higher cutting forces, while higher rake angles tended to lead to more continuous chip formation and lower cutting forces


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims

We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury.

Materials and Methods

Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 137 - 143
1 Mar 2017
Cho HS Park YK Gupta S Yoon C Han I Kim H Choi H Hong J

Objectives

We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model.

Methods

We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice.


Bone & Joint Research
Vol. 3, Issue 6 | Pages 212 - 216
1 Jun 2014
McConaghie FA Payne AP Kinninmonth AWG

Objectives

Acetabular retractors have been implicated in damage to the femoral and obturator nerves during total hip replacement. The aim of this study was to determine the anatomical relationship between retractor placement and these nerves.

Methods

A posterior approach to the hip was carried out in six fresh cadaveric half pelves. Large Hohmann acetabular retractors were placed anteriorly, over the acetabular lip, and inferiorly, and their relationship to the femoral and obturator nerves was examined.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 277 - 284
1 Feb 2011
Amin AK Huntley JS Patton JT Brenkel IJ Simpson AHRW Hall AC

The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces in situ chondrocyte death following a standardised mechanical injury produced by a scalpel cut compared with the same assault and exposure to normal saline (0.9%, 285 mOsm). Human cartilage explants were exposed to normal (control) and hyperosmotic 0.9% saline solutions for five minutes before the mechanical injury to allow in situ chondrocytes to respond to the altered osmotic environment, and incubated for a further 2.5 hours in the same solutions following the mechanical injury.

Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline.

These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 520 - 526
1 Apr 2008
Yau WP Leung A Liu KG Yan CH Wong LS Chiu KY

We have investigated the errors in the identification of the transepicondylar axis and the anteroposterior axis between a minimally-invasive and a conventional approach in four fresh-frozen cadaver knees. The errors in aligning the femoral prosthesis were compared with the reference transepicondylar axis as established by CT.

The error in the identification of the transepicondylar axis was significantly higher in the minimal approach (4.5° of internal rotation, sd 4) than in the conventional approach (3° of internal rotation, sd 4; p < 0.001). The errors in identifying the anteroposterior axis in the two approaches were 0° (sd 5) and 1.8° (sd 5) of internal rotation, respectively (p < 0.001).


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1285 - 1291
1 Sep 2005
Whiteside RA Jakob RP Wyss UP Mainil-Varlet P

Surgical reconstruction of articular surfaces by transplantation of osteochondral autografts has shown considerable promise in the treatment of focal articular lesions. During mosaicplasty, each cylindrical osteochondral graft is centred over the recipient hole and delivered by impacting the articular surface. Impact loading of articular cartilage has been associated with structural damage, loss of the viability of chondrocytes and subsequent degeneration of the articular cartilage. We have examined the relationship between single-impact loading and chondrocyte death for the specific confined-compression boundary conditions of mosaicplasty and the effect of repetitive impact loading which occurs during implantation of the graft on the resulting viability of the chondrocytes.

Fresh bovine and porcine femoral condyles were used in this experiment. The percentage of chondrocyte death was found to vary logarithmically with single-impact energy and was predicted more strongly by the mean force of the impact rather than by the number of impacts required during placement of the graft. The significance of these results in regard to the surgical technique and design features of instruments for osteochondral transplantation is discussed.