Aim. Staphylococcus aureus is the leading pathogen in fracture-related infection (FRI). Virulence factors vary between different
INTRODUCTION. The magnitude of principal
Incidence of intraoperative fracture during cementless Total Hip Arthroplasty (THA) is increasing. This is attributed to factors such as an increase in revision procedures and the favour of cementless fixation. Intraoperative fractures often occur during the seating of cementless components. A surgical mallet and introducer are used to generate the large impaction forces necessary to seat the component, sometimes leading to excessive hoop
Introduction. Ring breakage is a rare but significant complication requiring revision surgery and prolonging the course of treatment. We have encountered three cases with Taylor Spatial Frames (TSF) with breakage at the half ring junction of the distal ring. This experimental study examines the
Introduction. Non-unions often arise because of high
Initial stability of cementless components in bone is essential for longevity of Total Hip Replacements. Fixation is provided by press-fit: seating an implant in an under-reamed bone cavity with mallet strikes (impaction). Excessive impaction energy has been shown to increase the risk of periprosthetic fracture of bone. However, if implants are not adequately seated they may lack the stability required for bone ingrowth. Ideal fixation would maximise implant stability but would minimise peak
It is nowadays widely recognized that patient satisfaction following knee arthroplasty strongly depends on ligament balancing. To obtain this balancing, the occurring ligament
Aims. Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. Methods. A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 10. 5. colony-forming units (CFUs) of a bioluminescent
Introduction. After TKR, excessive tension within the lateral retinaculum can lead to joint instability, component wear, stiffness and pain. The spatial distribution of
Introduction:. The subscapularis muscle experiences significant
There has been an unprecedented increase in total knee replacement in recent years. The UK national joint registry recorded over 80,000 total knee replacements per year with a generally successful outcome. Improvements in modern knee replacement designs and surgical techniques has resulted in more and more young and active patients having knee replacements. Their more active lifestyles and increased life expectancy is also leading to a rise in revision knee surgery. The most common reason for revision knee replacement is for loosening as a result of wear and/or bone resorption. Revision knee tibial components typically use long stems to increase the stability in the presence of the proximal bone loss associated with implant removal and loosening. The stem design has been cited as a possible cause of the clinically reported pain at the stem end region. The aim of this study was to experimentally validate a finite element (FE) model and the analysis different load conditions and stem orientations in a stemmed tibial component. CT-scans of a composite tibia (Sawbones) were utilized to form a multi-body solid consisting of cortical bone and cancellous bone with an intramedullary canal. A fully cemented tibial component (Stryker) was virtually implanted in the composite tibia with the stem-end centred in the cancellous bone. The tibial compartment loads were distributed with a 60:40 (Medial: Lateral) and 80:20 ratio to simulate a normal and varus type knee. Several stem-end positions were developed with the modification of the tibias proximal resection angle. An experimental study using
Introduction. The role of soft tissue balancing in optimizing functional outcome and patient satisfaction after total knee arthroplasty surgery is gaining interest. This is due in part to the inability of pure alignment to demonstrate excellent functional outcomes 6. Consistent soft tissue balancing has been aided by novel technologies that can quantify loads across the joint at the time of surgery 4. In theory, compressive load equilibrium should be correlated with ligamentous equilibrium between the medial and lateral collateral ligaments. The authors propose to use the Collateral Ligaments
Introduction. In this study, three-dimensional (3D) digital image correlation (DIC) was adopted to investigate the
Polymer foams have been extensively used in the testing and development of orthopaedic devices and computational models. Often these foams are used in preference to cadaver and animal models due to being relatively inexpensive and their consistent material properties. Successful validation of such models requires accurate material/mechanical data. The assumed range of compressive moduli, provided in the sawbones technical sheet, is 16 MPa to 1.15 GPa depending on the density of foam. In this investigation, we apply two non-contact measurement techniques (digital volume correlation (DVC) and optical surface extensometry/point-tracking) to assess the validity of these reported values. It is thought that such non-contact methods remove mechanical extensometer errors (slippage, misalignment) and are less sensitive to test-machine end-artifacts (friction, non-uniform loading, platen flexibility). This is because measurement is taken directly from the sample, and hence material property assessment should be more accurate. Use of DVC is advantageous as full field
Rotator cuff repair is performed to treat shoulder pain and disability. Failure of the tendon repair site is common; one strategy to improve healing is to enforce a period of post-operative immobilisation. Immobilisation may have unintended effects on tendon healing. Tenocytes under uniaxial
INTRODUCTION:. The purpose of this study was to determine if a short femoral stem (Lima Corporate, Udine, Italy) would result in a
Introduction. Traditional applied loading of the knee joint in experimental testing of RTKR components is usually confined to replicating the tibiofemoral joint alone. The second joint in the knee, the patellofemoral joint, can experience forces of up to 9.7 times body weight during normal daily living activities (Schindler and Scott 2011). It follows that with such high forces being transferred, particularly in high flexion situations such as stair climbing, it may be important to also represent the patellofemoral joint in all knee component testing. This research aimed to assess the inclusion of the patellofemoral joint during in vitro testing of RTKR components by comparing tibial
Introduction. Each year, a large number of total hip arthroplasties (THA) are performed, of which 60 % use cementless fixation. The initial fixation is one of the most important factors for a long lasting fixation [Gheduzzi 2007]. The point of optimal initial fixation, the endpoint of insertion, is not easy to achieve, as the margin between optimal fixation and a femoral fracture is small. Femoral fractures are caused by peak stresses induced during broaching or by the hammer blows when the implant is excessively press-fitted in the femur. In order to reduce the peak stresses during broaching, IMT Integral Medizintechnik (Luzern, Switzerland) designed the Woodpecker, a pneumatic broach that generates impulses at a frequency of 70 Hz. This study explores the feasibility of using the Woodpecker for implant insertion by measuring both the
Revision knee prostheses are often augmented with intramedullary stems to provide stability following bone loss. However, there are concerns with the use of such stems, including loosening caused by strain-shielding, end-of-stem pain, and removal of healthy bone surrounding the medullary canal. Extracortical fixation plates may present an alternative. The aim of the study was to quantitatively evaluate and compare strain-shielding in the tibia following implantation of a knee replacement component augmented with either a conventional intramedullary stem (design1), or extracortical plates (design2) on the medial and lateral surfaces. Eight composite synthetic tibiae were implanted with one of the two designs, painted with a speckle pattern, loaded in axial compression (peak 2.5 kN) using a materials test machine, and imaged with a 5-megapixel digital image correlation (DIC) system throughout loading. Bone loss was simulated in all models by removing a volume of metaphyseal bone. For four tibiae, the tibial tray was augmented with a cemented stem (∼150 mm). The others were augmented by extracortical plates (maximum 90 mm long) along the medial and lateral surfaces (Fig. 1). Strains were computed using an ARAMIS 5M software system between loaded and unloaded states in the longitudinal direction, for the medial, posterior and lateral surfaces of the tibiae. Strains were checked locally by use of