Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

MINIMIZING BONE STRAIN WHILE MAXIMISING FIXATION DURING IMPACTION OF THE ACETABULAR CUP

International Society for Technology in Arthroplasty (ISTA) 31st Annual Congress, London, England, October 2018. Part 2.



Abstract

Initial stability of cementless components in bone is essential for longevity of Total Hip Replacements. Fixation is provided by press-fit: seating an implant in an under-reamed bone cavity with mallet strikes (impaction). Excessive impaction energy has been shown to increase the risk of periprosthetic fracture of bone. However, if implants are not adequately seated they may lack the stability required for bone ingrowth. Ideal fixation would maximise implant stability but would minimise peak strain in bone, reducing the risk of fracture.

This in-vitro study examines the influence of impaction energy and number of seating strikes upon implant push-out force (indicating stability) and peak dynamic strain in bone substitute (indicating likelihood of fracture). The ratio of these factors is given as an indicator of successful impaction strategy.

A custom drop tower with simulated hip compliance was used to seat acetabular cups in 30 Sawbone blocks with CNC milled acetabular cavities. 3 impaction energies were selected; low (0.7j), medium (4.5j) and high (14.4j), representing the wide range of values measured during surgery. Each Sawbone was instrumented with strain gauges, secured on the block surface close to the acetabular cavity (Figure 1). Strain gauge data was acquired at 50 khz with peak tensile strain recorded for each strike. An optical tracker was used to determine the polar gap between the cup and Sawbone cavity during seating. Initially 10 strikes were used to seat each cup. Tracking data were then used to determine at which strike the cups progressed less than 10% of the final polar gap. This value was taken as number of strikes to complete seating. Tests were repeated with fresh Sawbone, striking each cup the number of times required to seat. Following each seating peak push-out forces of the cups were recorded using a compression testing machine.

10, 5 and 2 strikes were required to seat the acetabular cups for the low, medium and high energies respectively. It was found that strain in the Sawbone peaked around the number of strikes to complete seating and subsequently decreased. This trend was particularly pronounced in the high energy group. An increase in Sawbone strain during seating was observed with increasing energy (270 ± 29 µε [SD], 519 ± 91 µε and 585 ± 183 µε at low, medium and high energies respectively). The highest push-out force was achieved at medium strike energy (261 ± 46N). The ratio between push-out and strain was highest for medium strike energy (0.50 ± 0.095 N/µε). Push-out force was similar after 5 and 10 strikes for the medium energy strike. However push-out recorded at ten strikes for the high energy group was significantly lower than for 2 strikes (<40 ± 19 N, p<0.05).

These results indicate that a medium strike energy with an appropriate number of seating strikes maximizes initial implant stability for a given peak bone strain. It is also shown that impaction with an excessive strike energy may greatly reduce fixation strength while inducing a very high peak dynamic strain in the bone. Surgeons should take care to avoid an excessive number of impaction strikes at high energy.

For any figures or tables, please contact the authors directly.