Introduction. Fretting crevice-corrosion (tribocorrosion) of metallic biomaterials is a major concern in orthopedic, spinal, dental and cardiovascular devices. 1.
Background. Currently, stailess steel, titanium and carbon-fiber reinforced polyetheretherketone (CF-PEEK) plates are available for the treatment of distal radius fractures. Since the possibility to create a less rigid fixation may represent an advantage in case of ostheoporotic or poor quality bone, the aim of this study is to compare the biomechanical properties of these three materials in terms of bending stiffness with a single static load and after cyclical loading, simulating physiologic wrist motion. Materials and Methods. Three volar plating systems with fixed angle were tested: Zimmer
Limb-lengthening nails have largely replaced external fixation in limb-lengthening and reconstructive surgery. However, the adverse events and high prevalence of radiological changes recently noted with the STRYDE lengthening nail have raised concerns about the use of internal lengthening nails. The aim of this study was to compare the prevalence of radiological bone abnormalities between STRYDE, PRECICE, and FITBONE nails prior to nail removal. This was a retrospective case series from three centres. Patients were included if they had either of the three limb-lengthening nails (STYDE, PRECICE, or FITBONE) removed. Standard orthogonal radiographs immediately prior to nail removal were examined for bone abnormalities at the junction of the telescoping nail parts.Aims
Methods
Title. Longitudinal Intravital Imaging to Quantify the “Race for the Surface” Between Host Immune Cell and Bacteria for Orthopaedic Implants with S. aureus Colonization in a Murine Model. Aim. To assess S. aureus vs. host cell colonization of contaminated implants vis intravital multiphoton laser scanning microscopy (IV-MLSM) in a murine model. Method. All animal experiments were approved by IACUC. A flat
Introduction. Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can influence the stem stability and outcome. The aim of this study was to measure the influence of stem material properties on micromotion and migration using Roentgen Stereophotogrammetric Analysis (RSA) system. Methods. 41 patients were implanted with a collarless polished tapered (CPT) femoral stem (Zimmer, Warsaw, Indiana), which was made of either cobalt-chromium (CoCr) (n=21) or
Introduction. Circular frame fixation has become a cornerstone of non-union and deformity management since its inception in the 1950s. As a consequence of modularity and heterogenous patient and injury factors, the prediction of the mechanobiological environment within a defect is subject to wide variations in practice. Given these wide range of confounding variables, clinical and cadaveric experimentation is close to impossible and frame constructs are based upon clinician experience. The Finite Element Analysis (FEA) method provides a powerful tool to numerically analyse mechanics. This work aims to develop an FEA model of a tibial defect and predict the mechanical response within the construct. Materials and Methods. The geometry of a tibia was acquired via CT and a series of bone defects were digitally created in the tibial diaphysis. A 4-ring, 10-wire Ilizarov fixator was constructed using 180mm
Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can influence the stem stability and outcome. The aim of this study was to measure the influence of stem material properties on micromotion and migration using Roentgen Stereophotogrammetric Analysis (RSA) system. 41 patients were implanted with a collarless polished tapered (CPT) femoral stem (Zimmer, Warsaw, Indiana), which was made of either cobalt-chromium (CoCr) (n=21) or
We investigated whether an alternative tension band wire technique will produce greater compression and less displacement at olecranon (elbow) fracture sites compared to a standard figure of eight tension band technique. Olecranon fractures are commonly treated with tension band wiring using
Patellar fractures account for approximately 1% of all fractures. Open reduction and internal fixation is recommended to restore extensor continuity and articular congruity. However, complications such as nonunion and symptomatic hardware, still exist. Furthermore, there is a risk of re-fracturing of the healed bone during the removal of the implants. Magnesium (Mg), a biodegradable metal, has elastic moduli and compressive yield strength that are comparable to those of natural bone. Our previous study showed that released Mg ions enhanced fracture healing. However, Mg-based implants degrade rapidly after implantation and lead to insufficient mechanical strength to support the fracture. Microarc oxidation (MAO) is a metal surface coating that reduces corrosion. We hypothesized that Mg pins, with or without MAO, would enhance fracture healing radiologically, mechanically, and histologically, while MAO would decrease degradation of Mg pins. Patellar fracture was performed on forty-eight 18-week-old female New Zealand White rabbits according to established protocol. Briefly, the patella is osteotomized transversely and a tunnel (1.1mm) was drilled longitudinally through the two bone fragments. A pin (1 mm,
INTRODUCTION. As computer navigated surgery continues to progress to the forefront of orthopedic care, the application of a navigated total shoulder arthroplasty has yet to appear. However, the accuracy of these systems is debated, as well as the dilemma of placing an accurate tool in an inaccurate hand. Often times a system's accuracy is claimed or validated based on postoperative imaging, but the true positioning is difficult to verify. In this study, a navigation system was used to preoperatively plan, guide, and implant surrogate shoulder glenoid implants and fiducials in nine cadaveric shoulders. A novel method to validate the position of these implants and accuracy of the system was performed using pre and post operative high resolution CT scans, in conjunction with barium sulfate impregnated PEEK surrogate implants. METHODS. Nine cadaveric shoulders were CT scanned with .5mm slice thickness, and the digital models were incorporated into a preoperative planning software. Five orthopedic shoulder specialists used this software to virtually place aTSA and rTSA glenoid components in two cadavers each (one cadaver was omitted due to incomplete implantation), positioning the components as they best deemed fit. Using a navigation system, each surgeon registered the native cadaveric bone to each respective CT. Each surgeon then used the navigation system to guide him or her through the total shoulder replacement, and implant the barium sulfate impregnated PEEK surrogate implants. Four cylindrical PEEK fiducials were also implanted in each scapula to help triangulate the position of the surrogate implants. Previous efforts were attempted with
Many orthopaedic procedures require implants to be trialled before definitive implantation. Where this is required, the trials are provided in a set with the instrumentation. The most common scenario this is seen in during elective joint replacements. In Scotland (2007) the Scottish Executive (. http://www.sehd.scot.nhs.uk/cmo/CMO(2006)13.pdf. ) recommended and implemented individually packed orthopaedic implants for all orthopaedic sets. The premise for this was to reduce the risk of CJD contamination and fatigue of implants due to constant reprocessing from corrosion. During many trauma procedures determining the correct length of plate or size of implant can be challenging. Trials of trauma implants is no longer common place. Many implants are stored in closed and sealed boxes, preventing the surgeon looking at the implant prior to opening and contaminating the device. As a result many implants are incorrectly opened and either need reprocessed or destroyed due to infection control policy, thus implicating a cost to the NHS. With even the simplest implants costing several hundreds of pounds, this cost is a very significant waste in resources that could be deployed else where. My project was to develop a method to produce in department accurate, cheap and disposable trials for implants often used in trauma, where the original manufacturer do not offer the option of a trial off the shelf. The process had to not involve contaminating or destroying the original implant in the production of a trial. Several implants which are commonly used within Glasgow Royal Infirmary and do not have trials were identified. These implants were then CT scanned within their sealed and sterile packaging without contamination. Digital 3D surface renders of the models were created using free open source software (OsiriX, MeshLab, NetFabb). These models were then processed in to a suitable format for 3D printing using laser sintering via a cloud 3D printing bureau (. Shapeways.com. ). The implants were produced in polyamide PA220 material or in 316L
Introduction. The process of wear and corrosion at the head-neck junction of a total hip replacement is initiated when the femoral head and stem are joined together during surgery. To date, the effects of the surface topography of the femoral head and metal stem on the contact mechanics during assembly and thus on tribology and fretting corrosion during service life of the implant are not well understood. Therefore, the objective of this study was to investigate the influence of the surface topography of the metal stem taper on contact mechanics and wear during assembly of the head-neck junction using Finite Element models. Materials and Methods. 2D axisymmetric Finite Element models were developed consisting of a simplified head-neck junction incorporating the surface topography of a threaded stem taper to investigate axial assembly with 1 kN. Subsequently, a base model and three modifications of the base model in terms of profile peak height and plateau width of the stem taper topography and femoral head taper angle were calculated. To account for the wear process during assembly a law based on the Archard equation was implemented. Femoral head was modeled as ceramic (linear-elastic), taper material was either modeled as titanium,
Aim. Multispecies biofilms are associated with difficult periprosthetic joint infections (PJI), particularly if they have different antibiotic sensitivities. We aimed to determine if we could generate and kill a multispecies biofilm consisting of a Gram negative and Gram positive pathogen in-vitro with antibiotic loaded calcium sulfate beads containing single or combination antibiotics. Methods. To establish whether we could co-culture mixed species biofilms various combinations of Pseudomonas aeruginosa (PA), Enterococcus faecalis (EF), Staphylococcus aureus (SA) and Enterobacter faecalis (EF) were grown together on 316L
Aim. Fungal periprosthetic joint infections are difficult to treat and often associated with a limited outcome for patients. Candida species account for approximately 90% of all fungal infections. In vivo biofilm models play major role to study biofilm development, morphology, and regulatory molecules for bacteria. However, in vivo modeling of biofilm-associated fungi models are very rare. Furthermore, due to ethical restrictions, mammalian models are replaced with other alternative models in basic research. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections with bacteria. This model organism was not used for fungi biofilm infection yet. Thus, we aimed to establish G. mellonella as in vivo model to study fungal implant infections using Candida albicans as model organism and to test anti-fungal medication. Method. Titanium and
Aim. The aim of this study was to define the role of implant material and surface topography on infection susceptibility in a preclinical in vivo model incorporating appropriate fracture biomechanics and bone healing. Method. The implants included in this experimental study were composed of: standard Electro polished
Background. Published simulator studies for metal/UHMWPE bearings couples showed that increasing the femoral head diameter by 1 mm increases wear by approximately 10% due to increased contact area. Therefore, there are concerns about increased wear with dual mobility hip bearings. Purpose of the study. The purpose of the study was to compare wear from dual mobility hip bearings to that with traditional fixed bearings. In addition, for the dual mobility bearings, the effect of femoral head material type on the liner wear was also evaluated. Methods. The bearings selected for the study are listed in Table 1. Prior to the start of the test all liners were soaked in lubricant for 48 hours. Hip testing was performed on a Shore Western Orbital Bearing machine in the anatomically oriented position. A simulated gait profile (synchronized at +/-23° biaxial rocking motion) with a minimum/maximum 200/2000N force was applied to the bearings at frequency of 1Hz. The lubricant used for the testing was 25% bovine serum with 0.2 % sodium azide, 20 mMol EDTA and distilled water. The test was interrupted at regular intervals for gravimetric assessment of wear amount. Findings of Study. Figure 1 shows total wear at 3 Mc and wear rates (determined from the slope of the linear regression) for all the groups. At 3 Mc, dual mobility bearings with
A large body of the orthopaedic literature clearly indicates that the cement mantle surrounding the femoral component of a cemented total hip arthroplasty should be at least 2 mm thick. In the early 1970s, another concept was introduced and is still in use in France consisting of implanting a canal filling femoral component line-to-line associated with a thin cement mantle. This principle has been named the “French paradox”. An explanation to this phenomenon has been provided by in-vitro studies demonstrating that a thin cement mantle in conjunction with a canal filling stem was supported mainly by cortical bone and was subjected to low stresses. We carried out a study to evaluate the in-vivo migration patterns of 164 primary consecutive Charnley-Kerboull total hip replacements. All prosthesis in the current series combined an all-polyethylene socket and a 22.2 mm
Aim. The aim of this study is to outline the steps and techniques required to create a patient specific 3D printed guide for the accurate placement of the origin of the femoral tunnel for single bundle ACL reconstruction. Introduction. Placements of the femoral tunnels for ACL reconstruction have changed over the years 1,2. Most recently there has been a trend towards placing the tunnels in a more anatomic position. There has been subsequent debate as to where this anatomic position should be 3. The problem with any attempt at consensus over the placement of an anatomic landmark is that each patient has some variation in their positioning and therefore a fixed point for all has compromise for all, as it is an average 4. Our aim was to attempt to make a cost effective and quick custom guide that could allow placement of the center of the patients’ newly created femoral tunnel in the mid position of their contralateral native ACL femoral footprint. Materials & Methods. We took a standard protocol MRI scan of a patient's knee without ACL injury transferred the DICOM files to a personal computer running OsiriX (Pixmeo, Geneva, Switzerland.) and analyzed it for a series of specific anatomical landmarks (fig1). These measurements and points were then utilized to create a 3D computer aided design (CAD) model of a custom guide. This was done using the 3D CAD program 123Design (Autodesk Ltd., Farnbourgh, Hampshire). This 3D model was then uploaded to an online 3D printing service and the physical guide was created in transparent acrylic based photopolymer, PA220 plastic (fig 2) and 316L
Aim. In vivo biofilm models play major role to study biofilm development, morphology, and regulatory molecules involve in biofilm. Due to ethical restrictions, the use mammalian models are replaced with other alternative models in basic research. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections. This model organism is easy to handle, cheap and ethical restriction free and could be used for the high through put screening of antimicrobial compounds to treat biofilm. To promote the use of this model in basic research we aimed to validate this based on the typical biofilm features such as less susceptible to the antibiotics, complexity of the biofilm structure and gene expression profile of biofilms. Method. G. mellonella larvae are maintained at 30oC on artificial diet in an incubator. Titanium and
Introduction. In my paediatric Orthopaedic practice I use Kirchner wires for the fixation of the TSF on bone. I noted a significant percentage of wire loosening during the post-operative period. The aim of this project was to establish the effectiveness of the wire clamping mechanism and find ways to reduce the incidence of wire loosening when using the TSF. Materials and Methods. In the first instance wire slippage was measured intra-operatively after the tensioner was removed using an intra-operative professional camera. Following this study mechanical tests were performed in the lab measuring the pull out properties of Kirchner wires using different bolts and different torque levels in order to tighten the wire on the fixator. Results. Our clinical study confirmed wire slippage intra-operatively immediately after the tensioner was removed. Wire slippage after the tensioner was removed was found to vary from 0.01 mm to 0.51 mm (mean 0.19 mm). Our mechanical tests showed that the ideal torque for tightening the wire on the frame using a bolt was around 15 N.m. A comparison between cannulated and slotted bolts suggested that cannulated bolts are more effective as a clamping mechanism. A comparison between aluminium made Taylor Spatial frame rings and