Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 249 - 255
1 Mar 2024
Inclan PM Brophy RH Saccone NL Ma Y Pham V Yanik EL

Aims

The purpose of this study is to determine an individual’s age-specific prevalence of total knee arthroplasty (TKA) after cruciate ligament surgery, and to identify clinical and genetic risk factors associated with undergoing TKA.

Methods

This study was a retrospective case-control study using the UK Biobank to identify individuals reporting a history of cruciate ligament surgery. Data from verbal history and procedural codes recorded through the NHS were used to identify instances of TKA. Patient clinical and genetic data were used to identify risk factors for progression from cruciate ligament surgery to TKA. Individuals without a history of cruciate ligament reconstruction were used for comparison.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 601 - 614
21 Sep 2023
Gu P Pu B Liu T Yue D Xin Q Li H Yang B Ke D Zheng X Zeng Z Zhang Z

Aims

Mendelian randomization (MR) is considered to overcome the bias of observational studies, but there is no current meta-analysis of MR studies on rheumatoid arthritis (RA). The purpose of this study was to summarize the relationship between potential pathogenic factors and RA risk based on existing MR studies.

Methods

PubMed, Web of Science, and Embase were searched for MR studies on influencing factors in relation to RA up to October 2022. Meta-analyses of MR studies assessing correlations between various potential pathogenic factors and RA were conducted. Random-effect and fixed-effect models were used to synthesize the odds ratios of various pathogenic factors and RA. The quality of the study was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 134 - 142
23 Feb 2022
Luo P Cheng S Zhang F Feng R Xu K Jing W Xu P

Aims

The aim of this study was to explore the genetic correlation and causal relationship between blood plasma proteins and rheumatoid arthritis (RA).

Methods

Based on the genome-wide association studies (GWAS) summary statistics of RA from European descent and the GWAS summary datasets of 3,622 plasma proteins, we explored the relationship between RA and plasma proteins from three aspects. First, linkage disequilibrium score regression (LD score regression) was applied to detect the genetic correlation between RA and plasma proteins. Mendelian randomization (MR) analysis was then used to evaluate the causal association between RA and plasma proteins. Finally, GEO2R was used to screen the differentially expressed genes (DEGs) between patients with RA and healthy controls.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 32 - 32
22 Nov 2024
Granata V Strina D Possetti V Leone R Valentino S Chiappetta K Bottazzi B Mantovani A Loppini M Asselta R Sobacchi C Inforzato A
Full Access

Aim. Periprosthetic joint infection (PJI) is one of the most serious and frequent complications in prosthetic surgery. Despite significant improvements in the criteria for diagnosis of PJI, the diagnostic workflow remains complex and, sometimes, inconclusive. Host immune factors hold great potential as diagnostic biomarkers in bone and joint infections. We have recently reported that the synovial concentration of the humoral pattern recognition molecule long pentraxin 3 (PTX3) is a sensitive and specific marker of PJI in total hip and knee arthroplasty patients (THA and TKA) undergoing revision surgery [1]. However, the contribution to risk and diagnosis of PJI of the genetic variation in PTX3 and inflammatory genes that are known to affect its expression (IL-1b, IL-6, IL-10, and IL-17A) has not been addressed. Therefore, we assessed these relationships in a cohort of THA and TKA patients who underwent prosthesis revision by focusing on a panel of single nucleotide polymorphisms (SNPs) in the PTX3, IL-1β, IL-6, IL-10 and IL-17A genes. Method. A case-control retrospective study was conducted on an historic cohort of patients that received THA or TKA revision and were diagnosed with PJI (cases) or aseptic complications (controls) [1]. Samples of saliva were collected from 93 subjects and used for extraction of genomic DNA to perform genotyping of the PTX3, IL-1β, IL-6, IL-10 and IL-17A polymorphisms. Moreover, whenever available, samples of synovial fluid and plasma [1] were used to measure the concentration of the IL-1β, IL-10, and IL-6 proteins by immunoassay. Uni-and multivariate analyses were performed to evaluate the relationships between genetic, biochemical, and clinical variables. Results. The rs3024491 (IL-10) and rs2853550 (IL-1b) SNPs were found to be strongly associated with the risk of PJI. The synovial levels of PTX3, IL-1β, IL-10, and IL-6 were higher in cases than in controls, and a clear correlation emerged between the synovial concentration of PTX3 and IL-1b in cases only. Also, we identified a causal relationship between rs2853550, synovial concentration of IL-1b and that of PTX3 (that is induced by IL-1b). Conclusions. Our findings suggest that SNPs in the IL-10 and IL-1b genes could be used for early identification of THA and TKA patients with high risk of PJI. It is therefore conceivable that integrating genetic data into current diagnostic criteria would improve diagnosis of PJI


Bone & Joint Open
Vol. 2, Issue 6 | Pages 414 - 421
1 Jun 2021
Kim SK Nguyen C Avins AL Abrams GD

Aims. The aim of this study was to screen the entire genome for genetic markers associated with risk for anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) injury. Methods. Genome-wide association (GWA) analyses were performed using data from the Kaiser Permanente Research Board (KPRB) and the UK Biobank. ACL and PCL injury cases were identified based on electronic health records from KPRB and the UK Biobank. GWA analyses from both cohorts were tested for ACL and PCL injury using a logistic regression model adjusting for sex, height, weight, age at enrolment, and race/ethnicity using allele counts for single nucleotide polymorphisms (SNPs). The data from the two GWA studies were combined in a meta-analysis. Candidate genes previously reported to show an association with ACL injury in athletes were also tested for association from the meta-analysis data from the KPRB and the UK Biobank GWA studies. Results. There was a total of 2,214 cases of ACL and PCL injury and 519,869 controls within the two cohorts, with three loci demonstrating a genome-wide significant association in the meta-analysis: INHBA, AEBP2, and LOC101927869. Of the eight candidate genes previously studied in the literature, six were present in the current dataset, and only COL3A1 (rs1800255) showed a significant association (p = 0.006). Conclusion. Genetic markers in three novel loci in this study and one previously-studied candidate gene were identified as potential risk factors for ACL and PCL injury and deserve further validation and investigation of molecular mechanisms. Cite this article: Bone Jt Open 2021;2(6):414–421


Aim. Previous studies had indicated that interleukin-1 beta (IL-1β) gene single nucleotide polymorphisms (SNPs) associate with different inflammatory diseases. However, potential links between these polymorphisms and susceptibility to extremity chronic osteomyelitis (COM) in Chinese population remain unclear. This study aimed to investigate relationships between IL-1β gene polymorphisms (rs16944, rs1143627, rs1143634 and rs2853550) and the risk of developing extremity COM in Chinese population. Method. Altogether 233 extremity COM patients and 200 healthy controls were genotyped for the four tag SNPs of the IL-1β gene using the SNapShot genotyping method. Comparisons were performed regarding genotype distribution, mutant allele frequency and four genetic models (dominant, recessive, homozygous and heterozygous models) of the 4 SNPs between the two groups. Results. Significant associations were identified between rs16944 polymorphism and the risk of developing COM by dominant model (P = 0.026, OR = 1.698, 95% CI 1.065–2.707) and heterozygous model (P = 0.030, OR = 1.733, 95% CI 1.055 – 2.847). Although no statistical differences were found of rs1143627 polymorphism between the two groups, there existed a trend that rs1143627 may be linked to an elevated risk of developing COM by outcomes of dominant (P = 0.061), homozygous (P = 0.080) and heterozygous (P = 0.095) models. However, no statistical correlations were found between rs1143634 and rs2853550 polymorphisms and susceptibility to COM in Chinese population. Conclusions. To our knowledge, we reported for the first time that IL-1β gene rs16944 polymorphism may contribute to the increased susceptibility to extremity COM in Chinese population, with genotype of AG as a risk factor


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 69 - 69
1 Jul 2020
Zhai G Liu M Rahman P Furey A
Full Access

While total joint replacement (TJR) is considered as an effective intervention to relieve pain and restore joint function for end-stage osteoarthritis (OA) patients, a significant proportion of the patients are dissatisfied with their surgery outcomes. The aim of this study was to identify genetic factors that can predict patients who do or do not benefit from these surgical procedures by a genome-wide association study (GWAS). Study participants were derived from the Newfoundland Osteoarthritis Study (NFOAS) which consisted of 1086 TJR patients. Non-responders to TJR was defined as patients who did not reach the minimum clinically important difference (MCID) based on the self administered Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) in terms of pain reduction or function improvment. DNA was extracted from the blood samples of the study participants and genotyped by Illumina GWAS genotyping platform. Over two million single nucleotide polymorphisms (SNPs) across the genome were genotyped and tested for assocition with non-responders. 39 non-responders and 44 age, sex, and BMI matched responders were included in this study. Four chromosome regions on chromosomes 5, 7, 8, and 12 were suggested to be associated with non-responders with p < 1 0–5. The most promising one was on chromosome 5 with the lead SNP rs17118094 (p=1.7×10–6) which can classify 72% of non-responders accurately. The discriminatory power of this SNP alone is very promising as indicated by an area under the curve (AUC) of 0.72 with 95% confidence interval of 0.63 to 0.81, which is much better than any previously studied predictors mentioned above. All the patients who carry two copies of the G allele (minor allele) of rs17118094 were non-responders and 75% of those who carry one copy of the G allele were non-responders. The discriminatory ability of the lead SNPs on chromosomes 7 and 12 were comparable to the one on chromosome 5 with an AUC of 0.74, and 88% of patients who carry two copies of the A allele of rs10244798 on chromosome 7 were non-responders. Similarly, 88% of patients who carry two copies of the C allele of rs10773476 on chromosome 12 were non-responders. While the discriminatory ability of rs9643244 on chromosome 8 was poor with an AUC of 0.26, its strong association with non-responders warrants a further investigation in the region. The study identified four genomic regions harboring genetic factors for non-responders to TJR. The lead SNPs in those regions have great discriminatory ability to predict non-responders and could be used to create a genetic prediction model for clinical unitilty and application


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 6 - 6
1 Dec 2015
Kostopoulou F Papathanasiou I Anastasopoulou L Aidarinis C Mourmoura E Malizos K Tsezou A
Full Access

Toll-like receptors (TLRs) are crucial components of the immune system that recognize microbial infection and trigger anti-microbial host defense responses. Gram positive bacteria are causative factors of bone infections, as they alter the balance of coordinated activities during bone remodeling, stimulating osteoclastogenesis. The aim of the study was to investigate whether genetic variation in TLR2 and TLR4 genes predisposes to bone infections’ susceptibility. One hundred and twenty patients with bone infections (osteomyelitis) and 200 healthy controls were genotyped for two single nucleotide polymorphisms (SNPs), R753Q [A/G] in TLR2 gene and T399I [C/T] in TLR4 gene. DNA was extracted from whole blood and the above SNPs were typed with PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) method for genotype identification. All patients were infected by Gram-positive bacteria, predominantly Staphylococcus aureus. Statistical analysis was carried out using the chi-square test. We observed a significantly increased frequency in patients carrying the GA genotype of TLR2 R753Q polymorphism compared to controls (p<0.05). We also found that the A allele was more common in patients than in controls. All individuals carrying the A allele were heterozygous for this variant, while homozygous mutant individuals were not detected in the patients and the control group. In contrast, we found that the TLR4 T399I [C/T] SNP was similarly distributed among the two groups (patients and controls). The mechanism through which TLR2 mediates its effect in bone infections is under investigation. A significant difference was observed in the genotype frequency of TLR2 R753Q [A/G] polymorphism in patients, suggesting that genetic variability in TLR2 gene may be associated with susceptibility to osteomyelitis in response to bacterial invasion in the bone


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 68 - 68
1 Jan 2017
Schneiderova P Kriegova E Gajdos P Vasinek M Mrazek F Kudelka M Gallo J
Full Access

The most common reasons for total joint arthroplasty (TJA) failure are aseptic loosening (AL) and prosthetic joint infection (PJI). There is a big clinical challenge to identify the patients with high risk of AL/PJI before the TJA surgery. Although there is evidence that genetic factors contribute to the individual susceptibility to AL/PJI, a predictive model for identification of patients with a high genetic risk of TJA failure has not been developed yet. We aimed to develop a risk evaluation tool utilising the AL/PJI-associated polymorphisms for identification of patients with high genetic risk of TJA failure based on inflammation-gene polymorphism panel. Based on allele and genotype frequencies of twenty-five single nucleotide polymorphisms (SNPs) in TNF, IL2, IL6, IL10, IL1b, IL-1Ra, MBL2, MMP1, FTO genes and those influencing the serum levels of biomarkers of TJA outcomes (IL6, CCL2/MCP-1, CRP, ESR) in peripheral blood obtained from patients with TJA (AL, n=110; PJI, n=93; no complications, n=123), we calculated a hazard ratio and a relative entropy of alleles and genotypes associated with AL and PJI and their combinations in patient subgroups. We conducted a risk evaluation tool based on the presence of risk alleles and genotypes in TNF (rs361525, rs1800629), DARC (rs12075), MBL2 (rs11003125) and FTO (rs9939609, rs9930506) genes associated with implant failure (AL/PJI). Of these, FTO gene variations (rs9939609, rs9930506) were associated mainly with PJI (P=0.001, OR=2.04, 95%CI=1.132–2.603; P=0.011, OR=1.72, 95%CI=1.338–3.096) and DARC (rs12075) with AL (P=0.005, OR=1.79, 95%CI=1.193–2.696). This tool calculates a hazard ratio of a combination of SNPs associated with AL and PJI for identification of patients with high and low risk of AL/PJI TJA failure. We proposed a risk evaluation tool for stratification of patients before the TJA surgery based on the genetic risk of AL/PJI development. The effect size for each genotype combination described in the study is small. Further multiparametric data analysis and studies on an extended patient cohort and other non-genetic and genetic parameters are ongoing. Grant support: AZV MZ CR VES16-131852A, VES15-27726A, IGA LF UP_2016_011


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 213 - 213
1 Jul 2008
Peach C Zhang Y Brown M Carr A
Full Access

Progressive arthritis can occur in association with massive tears of the rotator cuff. Altered joint kinematics are commonly proposed as the principle causative factor but this does not explain the absence of arthropathy in some patients. We have investigated the role of the ANKH gene in patients with cuff tear arthropathy. The transmembrane protein ANKH promotes intracellular to extracellular inorganic pyrophosphate channelling which regulates calcium pyrophosphate dihydrate and hydroxyapatite crystal deposition. Genomic DNA was prepared from peripheral blood leucocytes from 20 patients with cuff tear arthropathy diagnosed clinically and radiologically and 24 healthy matched controls. All 12 exons and exon-intron boundaries from the ANKH gene were PCR amplified and sequenced with BigDye version 3.1 terminator kit (ABI), and analysed using ABI PRISM ® 3100 Genetic Analyser. We have identified 5 single nucleotide polymorphisms (SNPs) including 4 that have previously been identified in patients with chondrocalcinosis. These are in exon 2 (GCC†’GCT 294), intron 2 (G†’A +8), exon 8 (GCA†’GCG 963) and intron 8 (T†’G +15). We also identified an A†’G variant in 3′-UTR, 30 base pairs after the stop codon which has not been reported before in crystal deposition diseases, and is also not seen in any of the healthy controls. Further elucidation is necessary to demonstrate a causal relationship between these ANKH mutations and cuff tear arthropathy, which will add to our understanding of pathogenic mechanisms in this condition


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 278 - 278
1 May 2009
Daavittila I Solovieva S Kuisma M Taimela S Natri A Korpelainen R Niinimäki J Tervonen O Ala-Kokko L Männikkö M Karppinen J
Full Access

Introduction: Modic changes are vertebral endplate changes visible in magnetic resonance imaging (MRI), which associate with degenerative intervertebral disc disease. Twin studies suggest that intervertebral disc degeneration and low back pain may be primarily explained by genetic factors. There are, however, no studies on genetic factors in Modic changes. Materials and methods: Eleven variations in eight genes (COL9A2, COL9A3, COL11A2, IL1A, IL1B, IL6, MMP-3 and VDR) were genotyped in an occupational cohort of 159 male train engineers and 69 male paper mill workers. All the study subjects were MRI scanned and evaluated for Modic changes. Results: Out of 228 subjects studied, 128 (56%) were found to have Modic change at one or more disc levels. 15% of them had exclusively Modic type I while 32% had exclusively Modic II changes. 10% of the subjects had both type I and type II changes. When single nucleotide polymorphisms (SNPs) were analyzed independently, none of them significantly associated with Modic changes. However, when the gene-gene interactions were evaluated IL1A and MMP-3 polymorphisms together associated with type II Modic changes (OR 3.2, 95% CI 1.2–8.5; p = 0.038). Furthermore, IL-1 gene cluster together with MMP-3 polymorphism associated significantly with type II Modic changes (OR = 8.14, 95% CI 1.72–38.44; p = 0.008). Discussion: This is the first study evaluating the role of genetic factors in relation to Modic changes. Genetic variations in IL-1 cluster and MMP-3 gene were found together to associate significantly with type II Modic changes


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 7 - 7
1 Feb 2012
Malik M Bayat A Jury F Oliver W Kay P
Full Access

The Osteoprotegerin/RANK/RANKL system has been implicated in the biological cascade of events initiated by particulate wear debris and bacterial infection resulting in periprosthetic bone loss around loosened total hip arthroplasties (THA). Individual responses to such stimuli may be dictated by genetic variation and we have studied the effect of single nucleotide polymorphisms (SNPs) within these genes. We performed a case control study of the Osteoprotegerin, RANK and RANKL genes for possible association with deep sepsis or aseptic loosening. All patients included in the study were Caucasian and had had a cemented Charnley THA and polyethylene acetabular cup. Cases consisted of 91 patients with early aseptic loosening and 71 patients with microbiological evidence at surgery of deep infection. Controls consisted of 150 THAs that were clinically asymptomatic for over 10 years and demonstrated no radiographic features of aseptic loosening. DNA samples from all individuals were genotyped using Taqman allelic discrimination. The A allele (p<0.001) and homozygous genotype A/A (p<0.001) for the OPG-163 SNP were highly associated with aseptic failure. Additionally, the RANK-575 (C/T SNP) T allele (p=0.004) and T/T genotype (p=0.008) frequencies were associated with aseptic failure. No statistically significant relationship was found between aseptic loosening and the OPG- 245 or OPG-1181 SNPs. When the septic group was compared to controls, the frequency of the A allele (p<0.001) and homozygous genotype A/A (p<0.001) for the OPG-163 SNP were statistically significant. No statistically significant relationship was found between septic failure and the OPG- 245, OPG-1181 or RANK-575 SNPs. Aseptic loosening and possibly deep infection of THA may be under genetic influence to candidate susceptibility genes. SNP markers may serve as predictors of implant survival and aid pharmacogenomic prevention of THA failure


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_12 | Pages 11 - 11
1 Nov 2015
MacInnes S Wilkinson J
Full Access

Introduction. Aseptic loosening, the clinical endpoint of osteolysis, remains the leading cause of total hip arthroplasty (THA) failure, and is caused by a host response to wear debris that varies between individuals. Although several candidate gene studies have identified loci associated with osteolysis susceptibility, there have been no systematic studies at genome-wide level. We aimed to identify risk loci associated with osteolysis by conducting a genome-wide association study. Methods. 3,706 Caucasian European patients following THA were studied. The discovery cohort comprising 894 patients (317 with osteolysis) were genotyped using the Illumina-610 beadchip followed by 1000 Genome-based imputation covering 10 million single nucleotide polymorphisms (SNPs). Phenotypes were transformed to normality where required, regressed on important covariates and z-standardised. Following quality control, osteolysis case-control analysis and a quantitative trait association analysis for time to prosthesis failure were undertaken. Index SNPs p<9×10. −4. were taken forward for replication in a second cohort comprising 2,812 subjects (834 osteolysis cases) recruited from the Norwegian arthroplasty registry. Genotyping was undertaken using Sequenom MassARRAY iPLEX Gold assay and association analyses undertaken using logistic and linear regression. Summary statistics were combined in a fixed-effects meta-analysis framework. Results. The strongest signal associated with time to prosthesis failure lay within DEFB129 gene. The signal index SNP, rs6105394, approached genome wide significance at p=5.75×10. −7. Two signals in the susceptibility analysis also approached genome-wide significance, 1 within CAMK4 (rs306105, OR 0.41, p=6.54×10. −7. ) and 1 upstream of PLNXA2 (rs11119057, OR 0.96, p=6.44×10. −7. ). Following meta-analysis, the strongest signal in the susceptibility analysis remained that within CAMK4 (rs306105, p=3.79×10. −4. ). The strongest signal associated with time to failure was just upstream of CNTN3 (rs1374879, p=2.15×10. −5. ). Discussion. We have identified promising loci associated with osteolysis and time to prosthesis failure although not at genome-wide significance (p<5×10. −8. ). In order to further validate these loci, larger genome wide association analysis is required


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 226 - 226
1 Sep 2005
Malik M Jury F Zeggini E Salway F Platt H Bayat A Ollier W Kay P
Full Access

Aims: Tumour necrosis factor-alpha is a proinflammatory cytokine that has been implicated in the inflammatory response to bacterial infection and wear debris particles around loosened total hip replacements (THR). Individual TNF responses to such stimuli may be dictated by genetic variation and we have studied the effect of single nucleotide polymorphisms (SNPs) within the TNF gene. Methods: We performed a case control study of 9 SNPs (−1031, −863, −857, −376, −308, −238, +489, +851 and +1304) for possible association with deep sepsis or aseptic loosening. All patients included in the study were Caucasian and had had a cemented Charnley THR. Cases consisted of 44 patients with early aseptic loosening and 30 patients with microbiological evidence at surgery of deep infection. Controls consisted of 85 THRs that were clinically asymptomatic for over 10 years and demonstrated no radiographic features of aseptic loosening. DNA was extracted from venous blood and genotyped by Snapshot assay. Results: Genotype and allele frequencies for all SNPs were in Hardy-Weinberg equilibrium between THR controls and a random sample of UK Caucasians. A significant association was found for the -863 SNP and aseptic loosening (p< 0.05; OR=2.36; 95% CI: 0.976 – 5.71). A trend towards association was found between the -863A SNP and deep infection (p=0.80; OR=2.42; CI: 0.800 – 7.34). Conclusions: Genetic polymorphism of TNF-alpha may play a significant role in THR aseptic loosening and possibly in deep infection. SNP markers may serve as predictors of implant survival and response to therapy such as anti-TNF treatment


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 396 - 396
1 Jul 2010
Gordon A Hamer A Stockley I Eastell R Wilkinson J
Full Access

Introduction: Polymorphisms within genes encoding bone regulatory cytokines influence individuals’ susceptibility to osteolysis after THA. We aimed to determine whether single nucleotide polymorphisms (SNPs) within these genes influence the severity of these osteolytic lesions in 272 patients with established aseptic loosening. Methods: Assessment of osteolytic lesions was made from pre-revision radiographs in conjunction with direct visualisation in those subjects undergoing surgery. Osteolytic lesions were defined as linear (AAOS pelvic and femoral osteolysis classification grade 0) or expansile, in the presence of segmental or cavitary defects (AAOS grade 1 or greater). We analysed 11 SNPs in the pro-inflammatory cytokines IL-1A, IL-1B, IL-1RA, IL-6 and TNF; 2 SNPs within the FRZB gene, which modulates osteoblast function; and 6 SNPS in the RANK/RANKL/OPG pathway, that modulates osteoclast function. Results: Femoral Osteolysis: Carriage of the IL-6 −174C allele was 60% in the expansile osteolysis group versus 80% in the linear osteolysis group (χ2 test p=0.007). Carriage of the OPG −163G allele was 34% in the expansile osteolysis group versus 18% in the linear group (χ2 test p=0.03). The odds ratios for expansile osteolysis associated with carriage of IL-6-174G and OPG −163G were 2.7 (1.3 to 5.7, p=0.008) and 2.3 (1.1 to 5.0, p=0.03) respectively. Acetabular Osteolysis: No differences in SNP genotype were found between osteolysis groups. Discussion: The IL-6-174G allele and the OPG-163G allele are over-represented in subjects with expansile femoral versus linear osteolysis, but do not relate to severity of pelvic osteolysis. These differences in association may reflect differences in the mechanism of osteolysis between the bone sites, however, replication of the results are required to confirm this differential association


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 249 - 249
1 May 2006
Gordon A Southam L Loughlin J Stockley I Hamer A Macdonald D Eastell R Wilkinson M
Full Access

In-vitro evidence suggests that wear debris can alter osteoblast function resulting in decreased bone matrix production and negative remodelling balance. FRZB encodes for Secreted Frizzled-Related Protein 3 which may play a role in bone formation and osteoarthritis. This study was undertaken to investigate whether the recently described single nucleotide polymorphisms (SNPs) at positions [+6] and [+109] of the FRZB gene are associated with osteolysis after THA. Genomic DNA was extracted from 481 North European Caucasians at a mean of 12 years following cemented THA for idiopathic osteoarthritis. The control group consisted of 267 subjects and the osteolysis group 214 subjects. The [+6] and [+109] FRZB SNPs were genotyped using standard techniques. For the FRZB [+6] SNP, the rare T allele was significantly over-represented in control versus the osteolysis group (χ. 2. test for trend, p=0.02,). The odds ratio for osteolysis associated with carriage of the [+6] T-allele versus the [+6] C-allele was 0.58 (95%CI 0.36 to 0.94), p=0.03. The odds ratio for osteolysis associated with carriage of the [+109] G-allele versus the [+109] C-allele was 0.66 (0.38 to 1.12), p=0.15. A number of covariates have previously been described in this cohort and after adjustment for the effects of these covariates, the odds ratio for osteolysis with carriage of the [+6] T-allele was 0.69 (0.42–1.16). We found that the FRZB [+6] T-allele is less common in subjects with osteolysis after THA versus controls, suggesting that allelic variants of genes associated with bone formation pathways may have a role in modulating the risk of osteolysis. However its loss of significance after correction for other factors suggests an interaction between this allele and other risk factors in osteolysis


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 69 - 70
1 Jan 2004
Malik MHA Jury F Salway F Platt H Zeggini E Ollier WER Kay PR
Full Access

Tumour necrosis factor-alpha is a proinflammatory cytokine that has been implicated in the propagation of inflammatory responses to bacterial infection and wear debris particles around loosened total hip replacements (THR). Individual TNF responses to such stimuli may be dictated by genetic variation. Single nucleotide polymorphisms (SNPs) at several loci within the TNF gene are associated with disease severity and susceptibility in a number of inflammatory conditions, but only a few SNPs have been screened in any one study. 14 SNPs have been identified within the TNF gene. Our unit has previously demonstrated that 5 SNPs are monomorphic in a sample group of UK Caucasians. We performed a case control study of the remaining 9 polymorphic positions (−1031, −863, −857, −376, −308, −238, +489, +851 and +1304) for possible association with deep sepsis or aseptic loosening. All patients included in the study were Caucasian and had had a cemented Charnley THR and polyethylene cup. Cases consisted of 44 patients with early aseptic loosening (defined as that occurring within 6 years of implantation and findings at revision surgery or by the criteria of Hodgkinson et al for the acetabulum and Harris for the femoral stem) and 30 patients with microbiological evidence at surgery of deep infection. Controls consisted of 85 THRs that had remained clinically asymptomatic for over 10 years and demonstrated no radiographic features of aseptic loosening or ‘at risk’ signs as described by Wroblewski et al. DNA was extracted from venous blood and genotyped by Snapshot assay. Genotype and allele frequencies for all SNPs were in Hardy-Weinberg equilibrium between THR controls and a random sample of UK Caucasians. The most significant associations were between the −238A (p< 0.05) and −863T (p< 0.05) alleles and aseptic loosening. A trend towards association was found between the −863A SNP and deep infection (p=0.80). The −238 A/G and −863 G/T genotypes were associated with deep infection (p< 0.05). No other significant associations were found. Genetic polymorphism of TNF appears to play a significant role in THR aseptic loosening and possibly in deep infection. SNP markers may serve as predictors of implant survival and response to therapy such as anti-TNF treatment


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 13 - 13
1 Dec 2013
Bechtel C Gebhart J Tatro J Schluchter M Wilkinson JM Greenfield E
Full Access

Introduction:. Wear particles cause aseptic loosening by stimulating macrophages to produce inflammatory cytokines. Recent studies indicate that Toll-like receptor 2 (TLR2) and TLR4 mediate macrophage responses to the wear particles [1–3]. TLR2 and TLR4 uniquely activate MyD88-dependent signaling via an additional adapter protein known as TIRAP/Mal [4]. Del Vescovo et al reported that three single nucleotide polymorphisms (SNPs) within the TIRAP/Mal gene associate with aseptic loosening in THA patients [5]. The goal of the current study was therefore to determine whether TIRAP/Mal mediates responses to orthopaedic wear particles. Methods:. Immortalized wild type (WT) and TIRAP/Mal knockout (KO) murine macrophages (Mfs) were incubated in the presence or absence of titanium (Ti) particles (1 × 10. 8. particles/cm. 2. [2]. Three types of particles were used as described previously [1,2]: Ti particles with adherent bacterial debris (38.3 Endotoxin Units/10. 9. particles), endotoxin-free Ti particles (<0.1 EU/10. 9. particles), and Ti particles with adherent lipopolysacharide (LPS, 32.8 EU/10. 9. particles). TNFa, IL-1b, and IL-6 mRNAs were measured by real-time PCR and the secreted cytokines were measured by ELISA. Particle-induced osteolysis in calvaria of TIRAP/Mal KO and WT mice was measured 7 days after particle implantation [1,2]. In vitro results are presented as mean ± SEM of 3–4 replicate experiments analyzed by two-way ANOVA with Bonferroni post-hoc corrections. In vivo results are presented as means of individual parietal bones ± SEM (n = 22) and analyzed by one-way ANOVA on ranks with Student Neuman-Keuls post-hoc corrections. * denotes p < 0.5, ** denotes p < 0.01, *** denotes p < 0. Results:. Ti particles with adherent bacterial debris induced substantial osteolysis and expression of TNFa, IL-1b, and IL-6 at both the mRNA and protein levels and all of those responses were significantly inhibited by TIRAP/Mal KO (Fig 1 & Fig 2). Endotoxin-free Ti particles had a small effect on osteolysis and cytokine mRNA expression that was not dependent on TIRAP/Mal (Fig 1 & data not shown). Adherence of highly purified LPS to the endotoxin-free particles reconstituted the stimulation of osteolysis and cytokine expression as well as the dependence on TIRAP/MAL (Fig 1 & data not shown). Specificity of the effects of TIRAP/Mal KO was demonstrated since responses induced by recombinant murine IL-1b were unaffected (data not shown). Discussion:. Our results are the first demonstration that TIRAP/Mal mediates effects of orthopaedic wear particles. TIRAP/Mal KO inhibited expression of TNFa by ∼50% and almost completely inhibited particle-induced osteolysis, as well as expression of IL-1b and IL-6. Our results, coupled with the genetic association of SNPs in human TIRAP/Mal with aseptic loosening [5], lead to two conclusions. First, activation of TIRAP/Mal likely contributes to aseptic loosening in patients. Second, pathogen-associated molecular patterns (PAMPs) also likely contribute to aseptic loosening since the results with endotoxin-free Ti particles demonstrate that adherent PAMPs are required for activation of TIRAP/Mal


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 315 - 315
1 May 2009
Tsezou A Poultsides L Satra M Malizos K
Full Access

It is known that wide variability exists among patients in the susceptibility to and outcome from infection. Polymorphisms in genes coding for proteins involved in the response to bacterial pathogens as tumor necrosis factor-alpha(TNF-a), interleukin (IL)-1alpha, IL-1beta, IL-1 receptor agonist, IL-6, IL-10 can influence the amount or function of the protein produced in response to bacterial stimuli. These genetic polymorphisms may influence the susceptibility to and outcome from infection. The aim of the study was to investigate whether genetic variation in genes coding for components of the innate immune response might be a critical determinant of the inflammatory response and the risk for and outcome from severe bacterial infection in individuals with musculoskeletal infections. The relationship between single nucleotide polymorphisms (SNPs) in the above mentioned genes and susceptibility to infection was evaluated. Forty patients with musculoskeletal infections hospitalised at the Orthopaedic Clinic of University Hospital of Larissa, as well as 80 healthy controls were included in the study. Genomic DNA was isolated from peripheral blood from all cases and controls and was extracted according to standard procedures. The following genes with their polymorphic positions were studied: IL 1α (IL 1α promoter −889), IL 1β (IL 1β promoter −511, pos. +3962), IL 1R (IL 1R pos. pst1 1970), IL 1RA (IL 1RA pos. mspa1 11100), IL 4Rα (IL 4Rα pos. +1902), IL 12 (IL 12 promoter −1188), TGF-β (TGF-β exon 1 codon 10, codon 25), TNF-α (TNF-α promoter −308, −238), IL 2 (IL 2 promoter −330, pos. +166), IL 4 (IL 4 promoter −1098, −590, −33), IL 6 (IL 6 promoter −174, pos. +nt 565) and IL 10 (IL 10 promoter −1082, −819, −592). Genotype distribution and allele frequencies in patients and controls were evaluated. There was a significant difference in genotype and allele frequency of IL-1a (T/C −889) p=0.000 (CC, TC) between patients and the control group. Moreover, 2 SNPs of interleukin 4 [IL-4 (T/G −1098) p=0.000 (GG, GT) p=0.009 (TT) and IL-4 (T/C-590) p=0.000 (CC, CT) p=0.006 (TT)] showed significant genotypic and allelic differences between the two groups. Finally, 2 SNPs of interleukin 6 [IL-6 (G/C-174) p=0.000 (CC) p=0.014 (GG), IL-6 G/A nt565) p=0.000 (AA,GA,GG)] and TNF-a [(G/A-308) p=0.034 (AG)] showed significant differences in genotype and allele frequencies between patients and the control group. We observed, for the first time, significant differences in genotype and allele frequencies of TNF-a (G/A-308), IL-1a (T/C -889), IL-4 (T/G -1098), IL-4 (T/C-590), IL-6 (G/C-174) and IL-6 G/A (nt565) in patients with musculoskeletal infections, a fact which points towards the involvement of cytokine gene polymorphisms in the pathogenesis of infection


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients.

Cite this article: Bone Joint J 2022;104-B(8):915–921.