Advertisement for orthosearch.org.uk
Results 1 - 20 of 1282
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 31 - 31
1 Feb 2013
Kassam A Ainsworth B Hawken R Ramesh R Conboy V
Full Access

Patients using a neutral rotation brace post proximal humerus fracture fixation have improved functional outcome and external rotation of the shoulder compared to patients using a standard polysling. Patients who have proximal humerus fracture fixation with extramedullary plates and screws have a risk of reduced range of movement especially external rotation. Gerber et al showed that the average external rotation after fixation of proximal humeral fractures was 39 degrees in their patient cohort compared to a normal range of 80–100 degrees. This can lead to reduced function and poor patient related outcomes. Geiger et al showed that in a cohort of 28 patients, poor functional outcome was noted in 39.3% with an average Constant-Murley Score of 57.9. Current practice is to utilise a polysling holding the shoulder in internal rotation post-shoulder fixation. Patients usually wear the sling for up to 6 weeks. We believe that this increases the risk of adhesion formation with the shoulder in internal rotation in the shoulder joint. Therefore this can cause loss of external rotation in the shoulder joint. We believe that holding the shoulder in a neutral alignment, with a neutral rotation brace post-fixation, will enable an increased rate of external rotation post-operatively thus improving external rotation and functional outcome. There is currently no literature comparing the different slings used post-operatively and we believe that this study would be the first of its kind. It would have a substantial change in the way clinicians manage proximal humeral fractures and will potentially reduce the numbers of re-operations to divide adhesions or perform capsular releases. Secondary benefits include a potential earlier return to full function and work and improved patient satisfaction. Study proposal: Prospective Randomised Controlled Trial of the neutral rotation brace compared to the standard, currently used, polysling post proximal humerus fracture fixation. No blinding of either participants or clinicians. Three surgeons utilising similar fixation techniques via the deltopectoral approach and using Philos plate fixation (Synthes Ltd.). Standardised post-operative rehabilitation protocol for all patients. Follow up: clinical review and postal outcomes for 1 year. Primary outcomes: Post operative functional outcome scores (Oxford, DASH, EQL) obtained at 6 weeks, 9 weeks, 3 months and 1 year). These will be compared to scores taken pre-operatively. Secondary outcomes: Clinical review at 6 weeks, 3 months and 1 year with range of movement measurements. Radiographs also taken at 6 weeks and 3 months to assess union. Patient questionnaire at 1 year (with outcome scores) assessing patient return to work, complications and patient satisfaction. Inclusion criteria: Proximal humeral fractures requiring operative intervention with extramedullary plate fixation (i.e. fractures displaced by 1cm and/or angulated by 45 degrees or more). Age>18. Exclusion Criteria: Patients having intra-operative findings of complete Pectoralis major rupture or if operative exposure requires complete Pectoralis major tenotomy. (These patients need to be held in internal rotation with a standard polysling to allow healing of the Pectoralis major tendon)


Purpose. We aimed to investigate whether the anterior superior iliac spine could provide consistent rotational landmark of the tibial component during mobile-bearing medial unicompartmental knee arthroplasty (UKA) using computed tomography (CT). Methods. During sagittal tibial resection, we utilized the ASIS as a rotational landmark. In 47 knees that underwent postoperative CT scans after medial UKA, the tibial component position was assessed by drawing a line tangential to the lateral wall of the tibial component. Rotation of the tibial component was measured using two reference lines: a line perpendicular to the posterior cortical rim of the tibia (angle α) and Akagi's line (angle β). Instant bearing position and posterior cruciate ligament fossa involvement were also evaluated. External rotation of the tibial component relative to each reference line and external rotation of the bearing relative to the lateral wall of the tibial component were considered positive values. Results. The mean angle α and β were 8.0 ± 6.1° (range, −4.0 – 24.3) and 8.7 ± 4.8° (range, 1.9 – 25.2), respectively. The mean instant bearing position was 4.3 ± 28.6° (range, −52.9 – 179.7). One bearing showed complete 180° rotation at 2 weeks postoperatively. Fourteen knees (29.8%) showed posterior cruciate ligament fossa involvement of the tibial resection margin. Conclusions. Due to the wide variation in, and inherent difficulty in identification of, the ASIS during the operation, it is not recommended for guidance of sagittal tibial resection during mobile-bearing medial UKA. Level of Evidence: Level IV


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 49 - 49
23 Feb 2023
Sorial R Coffey S Callary S
Full Access

Roentgen Stereophotogrammetric Analysis (RSA) is the gold standard for measuring implant micromotion thereby predicting implant loosening. Early migration has been associated with the risk of long-term clinical failure. We used RSA to assess the stability of the Australian designed cementless hip stem (Paragon TM) and now report our 5-year results. Fifty-three patients were prospectively and consecutively enrolled to receive a Paragon hip replacement. Tantalum beads were inserted into the bone as per RSA protocol and in the implant. RSA x-rays were taken at baseline 1–4 days post-surgery, at 6 weeks, 6 months, 12 months, 2 years, and 5 years. RSA was completed by an experienced, independent assessor. We reported the 2-year results on 46 hips (ANZJS 91 (3) March 2021 p398) and now present the 5-year results on 27 hips. From the 2-year cohort 5 patients had died, 8 patients were uncontactable, 1 patient was too unwell to attend, 5 patients had relocated too far away and declined. At 5 years the mean axial subsidence of the stem was 0.66mm (0.05 to 2.96); the mean rotation into retroversion was 0.49˚ (−0.78˚ to 2.09˚), rotation of the stem into valgus was −0.23˚ (−0.627˚ to 1.56˚). There was no detectable increase in subsidence or rotation between 6 weeks and 5 years. We compared our data to that published for the Corail cementless stem and a similar pattern of migration was noted, however greater rotational stability was achieved with the Paragon stem over a comparable follow-up period. The RSA results confirm that any minor motion of the Paragon cementless stem occurs in the first 6 weeks after which there is sustained stability for the next 5 years. The combination of a bi-planar wedge and transverse rectangular geometry provide excellent implant stability that is comparable to or better than other leading cementless stems


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 54 - 54
1 Feb 2020
Muir J Benson J Napenas J Vigdorchik J
Full Access

Anteroposterior (AP) pelvic radiographs are the standard tool used for pre-operative planning and post-operative evaluation during total hip arthroplasty (THA). The accuracy of this imaging modality is, however, limited by errors in pelvic orientation and image distortion. Pelvic obliquity is corrected for by orienting measurements to a reference line such as the interteardrop line or the interischial line, while several methods for correcting for pelvic tilt have been suggested, with varying levels of success. To date, no reliable method for correcting for pelvic rotation on pelvic imaging is available. The purpose of this study was to evaluate a novel method for correcting pelvic rotation on a standard anteroposterior (AP) radiographs. Computed tomography (CT) scans from 10 male cadavers and 10 female THA patients were segmented using 3D Slicer and used to create 3D renderings for each pelvis. Synthetic AP radiographs were subsequently created from the 3D renderings, using XRaySim. For each pelvis, images representing pelvic rotation of 30° left to 30° right, at 5° increments were created. Four unique parameters based on pelvic landmarks were used to develop the correction method: i) the horizontal distance from the upper edge of the pubic symphysis to the sacroiliac joint midline (PSSI), ii) the ratio of the horizontal distances from the upper edge of the pubic symphysis to the outer lateral border of both obturator foramina (PSOF), iii) the width ratio of the obturator foramina (OFW) and iv) the ratio of the horizontal distance from each anterior superior iliac spine to the sacroiliac joint midline (ASISSI). The relationships between the chosen parameters and pelvic rotation were investigated using a series of 260 (13 per pelvis) synthetic AP radiographs. Male and female correction equations were generated from the observed relationships. Validation of the equations was done using a different set of 50 synthetic radiographs with known degrees of rotation. In males, the PSSI parameter was most reliable in measuring pelvic rotation. In females, PSOF was most reliable. A high correlation was noted between calculated and true rotation in both males and females (r=0.99 male, r=0.98 female). The mean difference from the male calculated rotation and true rotation value was 0.02°±1.8° while the mean difference from the female calculated rotation and true rotation value was −0.01°±1.5°. Our correction method for pelvic rotation using four pelvic parameters provides a reliable method for correcting pelvic rotation on AP radiographs. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 120 - 120
1 Apr 2019
McKenna R Jacobs H Walter W
Full Access

Background. Accurate implant positioning is of supreme importance in total knee replacement (TKR). The rotational profile of the femoral and tibial components can affect outcomes, and the aim is to achieve coronal conformity with parallelism between the medio-lateral axes of the femur and tibia. Aims. The aim of this study is to determine the accuracy of implant rotation in total knee replacement. Methods. Intra-operatively, the trans-epicondylar axis of the femur (TEA) and Whiteside's line were used as the reference points, aiming to externally rotate the femoral component by 1 degree. The medial third of the tibial tuberosity was used as the anatomical reference point, aiming to reproduce the rotation of the native tibia. Pre-and post-operative CT scans were reviewed. The difference in femoral rotation was calculated by determining the femoral posterior condylar axis (PCA) of the native femur pre-operatively and the implant post-operatively. Tibial rotational difference was calculated between the native tibial posterior condylar axis and tibial baseplate. Results. Pre and post-operative CT scans of 41 knees in 31 patients were analysed. All surgeries were carried out by a single surgeon using the same implant. The mean difference in rotation of the femur post-operatively was 1.2 degrees external rotation (ER), range −4.7 to 6.9 degrees ER. 83% of femoral components were within 3 degrees of the target rotation. Mean difference in tibial rotation was −3.8 degrees ER, range −11.1 to 12.4 ER. Only 39% of tibial components were within 3 degrees of the target rotation. A line perpendicular to the midpoint of the tibial PCA was actually medial to the tibial tubercle in 33 knees, and only corresponded to the medial 1/3 of the tibial tubercle in 8 of 41 knees. Conclusions. Femoral component rotation is seen to be more accurate than tibial in this group. It may be that the anatomical landmarks used intra-operatively to judge tibial rotation are more difficult to accurately identify. Posterior landmarks are difficult to locate in vivo. This study would suggest that using the anterior anatomical landmark of the medial 1/3 of the tibial tubercle does not allow accurate reproduction of tibial rotation in total knee replacement


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 47 - 47
1 Feb 2021
Catelli D Grammatopoulos G Cotter B Mazuchi F Beaule P Lamontagne M
Full Access

Introduction. Interactions between hip, pelvis and spine, as abnormal spinopelvic movements, have been associated with inferior outcomes following total hip arthroplasty (THA). Changes in pelvis position lead to a mutual change in functional cup orientation, with both pelvic tilt and rotation having a significant effect on version. Hip osteoarthritis (OA) patients have shown reduced hip kinematics which may place increased demands on the pelvis and the spine. Sagittal and coronal planes assessments are commonly done as these can be adequately studied with anteroposterior and lateral radiographs. However, abnormal pelvis rotation is likely to compromise the outcome as they have a detrimental effect on cup orientation and increased impingement risk. This study aims to determine the association between dynamic motion and radiographic sagittal assessments; and examine the association between axial and sagittal spinal and pelvic kinematics between hip OA patients and healthy controls (CTRL). Methods. This is a prospective study, IRB approved. Twenty hip OA pre-THA patients (11F/9M, 67±9 years) and six CTRL (3F/3M, 46±18 years) underwent lateral spinopelvic radiographs in standing and seated bend-and-reach (SBR) positions. Pelvic tilt (PT), pelvic-femoral-angle (PFA) and lumbar lordosis (LL) angles were measured in both positions and the differences (Δ) between standing and SBR were calculated. Dynamic SBR and seated maximal-trunk-rotation (STR) were recorded in the biomechanics laboratory using a 10-infrared camera and processed on a motion capture system (Vicon, UK). Direct kinematics extracted maximal pelvic tilt (PT. max. ), hip flexion (HF. max. ) and (mid-thoracic to lumbar) spinal flexion (SF. max. ). The SBR pelvic movement contribution (ΔPT. rel. ) was calculated as ΔPT/(ΔPT+ΔPFA)∗100 for the radiographic analysis and as PT. max. /(PT. max. +HF. max. ) for the motion analyses. Axial and sagittal, pelvic and spinal range of motion (ROM) were calculated for STR and SBR, respectively. Spearman's rank-order determined correlations between the spinopelvic radiographs and sagittal kinematics, and the sagittal/axial kinematics. Mann-Whitney U-tests compared measures between groups. Results. Radiograph readings correlated with sagittal kinematics during SBR for ΔPT and PT. max. (ρ=0.64, p<0.001), ΔPFA and HF. max. (ρ=0.44, p<0.0002), and ΔLL and SF. max. (ρ=0.34, p=0.002). Relative pelvic movements (ΔPT. rel. ) were not different between radiographic (11%±21) and biomechanical (15%±29) readings (p=0.9). Sagittal SRB spinal flexion correlated with the axial STR rotation (ρ=0.43, p<0.0001). Although not seen in CTRL, sagittal SRB pelvic flexion strongly correlated with STR pelvic rotation in OA patients (ρ=0.40, p=0.002). All spinopelvic parameters were different between the patients with OA and CTRL. CTRLs exhibited significantly greater mobility and less variability in all 3 segments (spine, pelvis, hip) and both planes (axial and sagittal) (Table 1). Conclusion. Correlation between sagittal kinematics and radiographical measurements during SBR validates the spinopelvic mobility assessments in the biomechanics laboratory. Axial kinematics of both pelvis and spine correlated significantly in OA patients, suggesting that patients with abnormal sagittal mobility are likely to also exhibit abnormal axial mobility, which can further potentiate any at-risk kinematics. Significantly lower OA ROM must be investigated post-THA. Pre-THA variability of both sagittal and axial movements indicates that both planes must be considered ahead of surgical planning with navigation and/or robotics. For any figures or tables, please contact the authors directly


Background. It is technically challenging to restore hip rotation center exactly in total hip arthroplasty (THA) for patients with end-stage osteoarthritis secondary to developmental dysplasia of the hip (DDH) due to the complicated acetabular morphology changes. In this study, we developed a new method to restore hip rotation center exactly and rapidly in THA with the assistance of three dimensional (3-D) printing technology. Methods. Seventeen patients (21 hips) with end-stage osteoarthritis secondary to DDH who underwent THA were included in this study. Simulated operations were performed on 3-D printed hip models for preoperative planning. The Harris fossa and acetabular notches were recognized and restored to locate acetabular center. The agreement on the size of acetabular cup and bone defect between simulated operations and actual operations were analyzed. Clinical and radiographic outcomes were recorded and evaluated. Results. The sizes of the acetabular cup of simulated operations on 3-D printing models showed a high rate of coincidence with the actual sizes in the operations(ICC value=0.930) There was no significant difference statistically between the sizes of bone defect in simulated operations and the actual sizes of bone defect in THA(t value=0.03 P value=0.97). The average Harris score of the patients was improved from (38.33±6.07) preoperatively to the last follow-up (88.61±3.44) postoperatively. The mean vertical and horizontal distances of hip rotation center on the pelvic radiographs were restored to (15.12 ± 1.25 mm and (32.49±2.83) mm respectively. No case presented dislocation or radiological signs of loosening until last follow-up. Conclusions. The application of 3-D printing technology facilitates orthopedists to recognize the morphology of Harris fossa and acetabular notches, locate the acetabular center and restore the hip rotation center rapidly and accurately


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 52 - 52
1 Apr 2018
Pierrepont J Miller A Bare J McMahon S Shimmin A
Full Access

Introduction. The posterior condylar axis of the knee is the most common reference for femoral anteversion. However, the posterior condyles, nor the transepicondylar axis, provide a functional description of femoral anteversion, and their appropriateness as the ideal reference has been questioned. In a natural standing positon, the femur can be internally or externally rotated, altering the functional anteversion of the native femoral neck or prosthetic stem. Uemura et al. found that the femur internally rotates by 0.4° as femoral anteversion increases every 1°. The aim of this study was to assess the relationship between femoral anteversion and the axial rotation of the femur before and after total hip replacement (THR). Method. Fifty-nine patients had a pre-operative CT scan as part of their routine planning for THR. The patients were asked to lie in a comfortable position in the CT scanner. The internal/external rotation of the femur, described as the angle between the posterior condyles and the CT coronal plane, was measured. The native femoral neck anteversion, relative to the posterior condyles, was also determined. Identical measurements were performed at one-week post-op using the same CT methodology. The relationship between femoral IR/ER and femoral anteversion was studied pre- and post-op. Additionally, the effect of changing anteversion on the axial rotation of the femur was investigated. Results. There was a strong correlation between axial rotation of the femur and femoral anteversion, both pre-and post-operatively. Pearson correlation coefficients of 0.64 and 0.66 respectively. This supported Uemura et al.'s findings that internal rotation of the femur increases with increasing anteversion. Additionally, there was a moderate correlation, r = 0.56, between the change in axial rotation of the femur and change in anteversion. This trend suggested that external rotation of the leg would increase, if stem anteversion was decreased from the native. Conclusions. Patients with high femoral anteversion may have a natural mechanism of “correction” with femoral internal rotation. Equally, patients with femoral retroversion tend to naturally externally rotate their leg. Decreasing stem anteversion from native, trended toward an increase in external rotation of the femur. This finding is supported by the clinical observation of patients with high anteversion and compensatory in-toe, who have normal foot progression angle post-operatively after having their anteversion decreased. These findings have implications when planning implant alignment in THR


Background. Calipered kinematically aligned (KA) total knee arthroplasty (TKA) restores the in vitro internal-external (I-E) rotation laxities at 0° and 90° of the native knee. Although increasing and decreasing the thickness of the insert in 1 mm increments loosens and tightens the flexion space, there are little data on how this might adversely affect the screw-home mechanism and I-E rotational laxity. The present study determined the differences in the I-E range of rotation and I-E positions at maximum extension and at 90° of flexion that result from the use of insert thicknesses that deviate ± 1mm in thickness from the implanted insert. Methods. 20 patients were treated with a calipered KA and a PCL retaining implant with a 1:1 medial ball-in-socket constraint and a non-constrained lateral flat articular insert surface. Verification checks, that are validated to restore native tibial compartment forces without release of healthy ligaments including the PCL, were used to select the optimal insert thickness. Trial inserts with thicknesses ranging from 10 to 13 mm were 3-D printed with medial goniometric markings that record rotation from 20° external to −20° internal with respect to a sagittal line laser marked on center of the medial condyle of the trial femoral component at maximum extension and 90° of flexion (Figure 1). Results. For all three inserts, the tibial component progressively internally rotated on the femoral component from maximum extension to maximum flexion. From maximum extension to 90° flexion the −21.7° range of internal rotation for the optimal insert thickness was greater than the −16° for the 1mm thinner insert (p < 0.000), and the −13.1° for the 1mm thicker insert (p < 0.000). At maximum extension, the mean insert position of 7° external for the optimal insert thickness was more external than the 4.5° for the 1mm thinner insert (p < 0.000), and the 3.5° for the 1mm thicker insert (p < 0.000) (Figure 2). At 90° the mean −14.7° internal insert position for the optimal insert thickness was more internal than the −11.5° for the 1mm thinner insert (p < 0.000), and the −9.5° for the 1mm thicker insert (p < 0.000) (Figure 3). Discussion and Conclusions. The insert goniometer is an inexpensive, simple, and sensitive instrument that measured the insert position of a medial ball-in-socket PCL retaining implant with a flat lateral insert implanted with calipered KA and showed the I-E rotation matched the pattern of the native knee's screw-home mechanism. Restoring the pre-arthritic native ligament laxities is the target, as the insert goniometer detected a 6° loss of internal rotation and a less external position of the insert at maximum extension and a less internal position at 90° when the healthy ligaments were stretched or loosened by 1mm. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 142 - 142
1 Jan 2016
Fukushima S Togashi E Sugawara H Narita A Takagi M
Full Access

It is very important for implanting tibial component to prevent bearing dislocation in Oxford UKA. One of the keys is accurate rotational position of tibia. But the problem remains what is accurate rotation of tibia in UKA. Oxford Signature decided the rotation of tibia component from MRI images. We measured the component rotation of tibia using CT after operation. Patients and Methods. 14 patients were operated by Oxford Signature and 11 patients were operated by Microplasty method. Patients were examined by CT 2 or 3 weeks later after operation. We compared component axis of tibia and A-P axis by best fit circle, Akagi's line. Results. In Oxford Signature group, component angle were 7.1 degree external rotation compared with A-P axis by best fit circle and were 3.6 degree external rotation compared with Akagi's line. In Microplasty group, component angle were 8.1 degree external rotation compared with A-P axis by best fit circle and were 3.8 degree external rotation compared with Akagi's line. Discussion. It is difficult to decide accurate position of tibial component for UKA. The A-P axis by best fit circle and Akagi's line are reliable methods for tibial axis in TKA. We examined component axis of Signature Oxford and Microplasty, these were same tendency toward external rotation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 54 - 54
1 Apr 2018
Pierrepont J Ellis A Walter L Marel E Bare J Solomon M McMahon S Shimmin A
Full Access

Introduction. The pelvis moves in the sagittal plane during functional activity. These movements can have a detrimental effect on functional cup orientation. The authors previously reported that 17% of total hip replacement (THR) patients have excessive pelvic rotation preoperatively. This increased pelvic rotation could be a risk factor for instability and edge-loading in both flexion and/or extension. The aim of this study was to investigate how gender, age and lumbar spine stiffness affects the number of patients at risk of excessive sagittal pelvic rotation. Method. Pre-operatively, 3428 patients had their pelvic tilt (PT) and lumbar lordotic angle (LLA) measured in three positions; supine, standing and flexed-seated, as part of routine planning for THR. The pelvic rotation from supine-to-standing and from supine-to-seated was determined from the difference in pelvic tilt measurements between positions. Lumbar flexion was determined as the difference between LLA standing and LLA when flexed-seated. Patients were stratified into groups based upon age, gender and lumbar flexion. The percentage of patients in each group with excessive pelvic rotation, defined by rotation ≥13° in a detrimental direction, was determined. Results. Posterior pelvic rotation from supine-to-stand increased with age and decreasing lumbar flexion. This was more pronounced in females. Similarly, anterior pelvic rotation from supine-to-seated increased with age and decreasing lumbar flexion. This was more pronounced in males. Notably, 30% of elderly females had excessive pelvic rotation. Furthermore, 38% of patients with lumbar flexion <20° had excessive pelvic rotation. Conclusions. Excessive pelvic rotation was more common in older patients and in patients with limited lumbar flexion. This might be a factor in the increased dislocation rate in the elderly population. A more stable articulation might be a consideration in patients with limited lumbar flexion (<20°). This constitutes 5% of the THR population. The large range of pelvic rotation in each group supports individual analysis on all patients undergoing THR


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 97 - 97
1 May 2016
Uemura K Takao M Sakai T Nishii T Sugano N
Full Access

Introduction. In total hip arthroplasty (THA), it is important to define the coordinate system of the pelvis and femur for standardization in measuring the implant alignment. A coronal plane of the pelvis (functional pelvic coordinates) in supine position has been recommended as the pelvic coordinates for cup orientation and an anatomical plane of the femur (posterior condylar plane: PCP) is widely used as the femoral coordinates to measure stem or femoral anteversion. It has been reported that the pelvic sagittal tilt in supine does not change a lot after THA. However, changes in the axial rotation of the posterior condylar plane after THA have not been well studied. If the horizontal tilt of PCP of the femur in a resting position changes a lot after THA, the combined anteversion theory cannot be functional. Therefore, we evaluated the angulation changes of the posterior condylar plane after THA and analyzed the related factors by using CT images. Methods. Forty patients (5 men and 35 women, mean age 58 years) with hip osteoarthritis who had undergone THA were the subjects of this study. CT images used for measurements were taken preoperatively (preop-CT) and 3 weeks after THA (postop-CT), and more than 2 years after THA (2nd postop-CT). Measurements were done on the reconstructed CT images using 3D viewer software. The axial rotation of the femur was measured as the angle between the posterior condylar line (PCL) and a line through the bilateral anterior superior iliac spines. To analyze the factors relating to the rotational change of the femur, change in femoral anteversion, leg length, and leg medialization after THA were also measured. Surgical approach (posterolateral: 32 cases, direct anterior: 8 cases) was also evaluated as a factor relating to the rotational change. Results. PCL was externally rotated at an average angle of 3.3° at preop-CT, −10.4° at postop-CT, and −7.2° at 2nd postop-CT. There was a significant difference between preop-CT and postop-CT, preop-CT and 2nd postop-CT (p<0.01, respectively). Femoral anteversion decreased 0.5°, the leg was lengthened 11.7mm, and was medialized 8.5mm after THA. In the analysis of the related factors, only the leg length change and the amount of leg medialization significantly correlated with the rotational change between preop-CT and postop-CT (β=−0.367, −0.316, respectively). On the other hand, no factors correlated with the rotational change between preop-CT and 2nd postop-CT. Discussion. PCL at a resting position internally rotated 13.7° after THA and remained 10.5° internally rotated from the preoperative position at more than 2 years after THA. This internal rotation after THA may have occurred by releasing the external contracture caused by osteoarthritis. Because the PCL at a resting position internally rotates approximately 10° after THA, we have to consider this change when we calculate the range of motion of the hip in the combined anteversion theory. Conclusion. PCL at a resting position internally rotates approximately 10°after THA and we may need to consider this change in the combined anteversion theory


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 121 - 121
1 May 2013
Scott R
Full Access

There are basically 4 ways advocated to determine the proper femoral component rotation during TKA: (1) The Trans-epicondylar Axis, (2) Perpendicular to the “Whiteside Line,” (3) Three to five degrees of external rotation off the posterior condyles, and (4) Rotation of the component to a point where there is a balanced symmetric flexion gap. This last method is the most logical and functionally, the most appropriate. Of interest is the fact that the other 3 methods often yield flexion gap symmetry, but the surgeon should not be wed to any one of these individual methods at the expense of an unbalanced knee in flexion. In correcting a varus knee, the knee is balanced first in extension by the appropriate medial release and then balanced in flexion by the appropriate rotation of the femoral component. In correcting a valgus knee, the knee can be balanced first in flexion by the femoral component rotation since balancing in extension almost never involves release of the lateral collateral ligament (LCL) but rather release of the lateral retinaculum. If a rare LCL release is anticipated for extension balancing, then it would be performed prior to determining the femoral rotation since the release may open up the lateral flexion gap to a point where even more femoral component rotation is needed to close down that lateral gap. It is important to know and accept the fact that some knees will require internal rotation of the femoral component to yield flexion gap symmetry. The classic example of this is a knee that has previously undergone a valgus tibial osteotomy that has led to a valgus tibial joint line. In such a case, if any of the first 3 methods described above is utilised for femoral component rotation, it will lead to a knee that is very unbalanced in flexion being much tighter laterally than medially. A LCL release to open the lateral gap will be needed, increasing the complexity of the case. My experience has shown that intentional internal rotation of the femoral component when required is well-tolerated and rarely causes problems with patellar tracking. It is also of interest to note that mathematical calculations reveal that internally rotating a femoral component as much as 4 degrees will displace the trochlear groove no more that 2–3 mm (depending on the FC size), an amount easily compensated for by undersizing the patellar component and shifting it medially those few mm. There are basically 3 ways to determine the proper tibial component rotation during TKA: (1) Anatomically cap the tibial cut surface with an asymmetric tibial component, (2) Align the tibial rotation relative to a fixed anatomic tibial landmark (most surgeons use this method and align relative to the medial aspect of the tibial tubercle), (3) Rotate the tibial component to a point where there is rotational congruency in extension between the femoral and tibial articulating surfaces. This third method must be used with fixed bearing arthroplasties (especially with conforming articulations) to avoid rotational incongruency between the components during weight-bearing that can create abnormal and deleterious torsional forces on posterior stabilised posts, insert tray interfaces and bone-cement interfaces. Rotating platform articulations can tolerate rotational mismatch unless it is to a point where the polyethylene insert rotates excessively and causes symptomatic soft tissue impingement


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 32 - 32
1 Apr 2019
Elkabbani M Haidar F Mohamed T Osman A Tarabichi S
Full Access

Introduction. Tibial component malrotation is one of the commonest causes of pain and stiffness following total knee arthroplasties, however, the assessment of tibial component malrotation on imaging is not a clear-cut. Aim. The objective of this study was to assess tibial component rotation in cases with pain following total knee replacement using MRI with metal artifact reduction technique. Methods. In 35 consecutive patients presented to our clinic between January 2016 and April 2017 with persistent unexplained moderate to severe pain for at least 6 months following total knee arthroplasties after exclusion of infection, MRI evaluation of tibial component rotation using O-MAR technique-(Metal Artifact Reduction for Orthopedic implants) to improve visualization of soft tissue and bone by reducing artifacts caused by metal implants- was done according to the technique of Berger et al. Results. 25 cases showed internal rotation of tibial component, 5 cases showed neutral rotation, 5 cases showed external rotation with presence of abnormal intraarticular fibrous bands. Conclusion. Two main conclusions are obtained from this study:. Firstly: Internal rotation of tibial component must be excluded in all cases of persistent pain following total knee replacement. Secondly: Magnetic resonance imaging with the newly developed metal artifact reduction techniques is a very useful tool in evaluating cases of unexplained pain following total knee replacement


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 38 - 38
1 Mar 2017
Takai S
Full Access

Radiographic assessment of component rotation has been impossible without using computed tomography or magnetic resonance imaging. The purpose of the present study was to assess the rotational alignment of the femoral component using plane radiography. Eighty-three patients from 89 knees who underwent primary total knee arthroplasty (TKA) were evaluated radiographically before and after surgery using kneeling view, a postero-anterior projection vertical to the tibia at 70 to 80° flexion of the knee. In this view, the transepicondylar axis and posterior condylar line can be seen. The condylar twist angle was 5.7±1.6° preoperatively and 2.6±0.9° postoperatively. The external rotation of the femoral component was 3.2±1.1°. Plane kneeling view radiographs taken before and after TKA can be used to assess the rotational alignment of the femoral component. Axial images of patellofemoral articulation were then superimposed to the kneeling view images along the outline of the femoral component. Combination of kneeling view and axial view can demonstrate the relationship between the rotational alignment of the femoral component and the patellofemoral joint after TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 128 - 128
1 Jan 2016
Sanford B Williams J Huffman K Zucker-Levin A Mihalko W
Full Access

Introduction. The sit-to-stand (STS) movement is a physically demanding activity of daily living and is performed more than 50 times per day in healthy adults. Several studies have shown that the normal ‘screw-home’ mechanism is altered after total knee arthroplasty (TKA). However, these studies have been criticized due to their limitations of the movement being non-weight-bearing or atypical daily activity (lunge maneuver). We analyzed TKA subjects during a STS activity to determine if the internal-external rotation of their TKA knees differed from the knees of control subjects. Materials and Methods. Six TKA subjects (3 M, 3 F) participated following institutional review board approval and informed consent. One subject had bilateral knee replacement. Surgery was performed by the same surgeon using the same type of implant (6 posterior-stabilized, 1 cruciate-retaining). The control group included eight healthy subjects (6 M, 2 F). Retro-reflective markers were placed over bony landmarks of the torso, pelvis, and lower extremities, and arrays of four markers were attached to the thighs and shanks using elastic wrap. A digitizing pointer was used to create virtual markers at the anterior superior iliac spines. A nine camera video-based opto-electronic system (Qualisys) was used for 3D motion capture. Subjects were barefoot and seated on a 46 cm armless bench with one foot on each force plate (AMTI). Subjects rose from their seated position, paused, and returned to the seated position at a self-selected pace repeatedly for 30 seconds. Subjects did not use their arms to push off the bench. Only the STS portion of the task was analyzed. The start of the STS cycle was defined when the C7 marker began to move forward in the sagittal plane and ended at the point of maximum knee extension. Only the right leg of the control subjects was used for analysis. Results. Femurs rotated internally as control subjects rose from the bench. Two of the TKA knees displayed a similar pattern of internal rotation as the knees extended. However, four TKA knees displayed the opposite pattern, and one TKA knee showed no rotation. For ease of comparison I/E rotation was normalized to zero at full extension (Figure 1). Discussion. Our results of a reverse tibio-femoral rotational pattern in TKA knees compared to normal knees are similar to those reported in fluoroscopic studies in which a single leg lunge activity is performed. Finding a similar reversal in STS is significant due to the necessity and frequency of the STS activity during daily living and warrants further investigation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 49 - 49
1 Dec 2016
Lalone E Gammon B Willing R Nishiwaki M Johnson J King G
Full Access

Altered distal radioulnar joint contact (DRUJ) mechanics are thought to cause degenerative changes in the joint following injury. Much of the current research examining DRUJ arthrokinematics focuses on the effect of joint malalignment and resultant degenerative changes. Little is known regarding native cartilage contact mechanics in the distal radioulnar joint. Moreover, current techniques used to measure joint contact rely on invasive procedures and are limited to statically loaded positions. The purpose of this study was to examine native distal radioulnar joint contact mechanics during simulated active and passive forearm rotation using a non-invasive imaging approach. Testing was performed using 8 fresh frozen cadaveric specimens (6 men: 2 women, mean age 62 years) with no CT evidence of osteoarthritis. The specimens were thawed and surgically prepared for biomechanical testing by isolating the tendons of relevant muscles involved in forearm rotation. The humerus was then rigidly secured to a wrist simulator allowing for simulated active and passive forearm rotation. Three-dimensional (3D) cartilage surface reconstructions of the distal radius and ulna were created using volumetric data acquired from computed tomography after joint disarticulation. Using optically tracked motion data and 3D surface reconstructions, the relative position of the cartilage models was rendered and used to measure DRUJ cartilage contact mechanics. The results of this study indicate that contact area was maximal in the DRUJ at 10 degrees of supination (p=0.002). There was more contact area in supination than pronation for both active (p=0.005) and passive (p=0.027) forearm rotation. There was no statistically significant difference in the size of the DRUJ contact patch when comparing analogous rotation angles for simulated active and passive forearm motion (p=0.55). The contact centroid moved 10.5±2.6 mm volar along the volar-dorsal axis during simulated active supination. Along the proximal-distal axis, the contact centroid moved 5.7±2.4 mm proximal during simulated active supination. Using the technique employed in this study, it was possible to non-invasively examine joint cartilage contact mechanics of the distal radioulnar joint while undergoing simulated, continuous active and passive forearm rotation. Overall, there were higher contact area values in supination compared with pronation, with a peak at 10 degrees of supination. The contact centroid moved volarly and proximally with supination. There was no difference in the measured cartilage contact area when comparing active and passive forearm rotation. This study gives new insight into the changes in contact patterns at the native distal radioulnar joint during simulated forearm rotation, and has implications for increasing our understanding of altered joint contact mechanics in the setting of deformity


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 57 - 57
1 Dec 2017
Péan F Carrillo F Fürnstahl P Goksel O
Full Access

The Interosseous Membrane (IOM) of the forearm is made up of ligaments, which are involved in load balancing of the radioulnar joint and the shaft. Motion models of the forearm are necessary for planning orthopedic surgeries, such as osteotomies, which aim at solving limit of the range of motion or instabilities. However, existing models focus on a pure kinematic approach, omitting the physical properties of the ligaments, thus limiting the range of application by missing dynamical effects. We developed a model that takes into account the mechanical properties of the IOM. We simulated the pro-supination by creating an elastic coupling to the desired motion around the standard axis of rotation. We tested our model on a healthy subject, using CT-reconstructed bone models, and literature data for the ligaments. Multiple parameters, including forces of ligaments and positions of landmarks, are output for analysis. The length of the ligaments over pro-supination was in agreement with the literature. Their rest lengths must be recorded in future anatomical studies. The IOM helps in maintaining the contact with cartilage, except in late pronation. Scarring of the central band increases the force generated along the axis of rotation toward the wrist, while scarring of the proximal part does the opposite in pronation. In contrast to kinematic models, the proposed model is helpful to study the effect of physical properties of the IOM, such scarring, on the forearm motion. Future work will be to apply our model to pathological cases, and to compare to clinical observations


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 107 - 107
1 Jan 2016
Walker D Struk A Wright T Banks S
Full Access

Reverse total shoulder arthroplasty (RTSA) has had rapidly increasingly utilization since its approval for U.S. use in 2004. RTSA accounted for 11% of extremity market procedure growth in 201. Although RTSA is widely used, there remain significant challenges in determining the location and configuration of implants to achieve optimal clinical and functional results. The goal of this study was to measure the 3D position of the shoulder joint center, relative to the center of the native glenoid face, in 16 subjects with RTSA of three different implant designs, and in 12 healthy young shoulders. CT scans of 12 healthy and 16 pre-operative shoulders were segmented to create 3D models of the scapula and humerus. A standardized bone coordinate system was defined for each bone (Figure 1). For healthy shoulders, the location of the humeral head center was measured relative to the glenoid face center. For the RTSA shoulders, a two-step measurement was required. First, 3D models of the pre-operative bones were reconstructed and oriented in the same manner as for healthy shoulders. Second, 3D model-image registration was used to determine the post-operative implant positioning relative to the bones. The 3D position and orientation of the implants and bones were determined in a sequence of six fluoroscopic images of the arm during abduction, and the mean implant-to-bone relationships were used to determine the surgical positioning of the implants (Figure 2). The RTSA center of rotation was defined as the offset from the center of the implant glenosphere to the center of the native glenoid face. The center of rotation in RTSA shoulders varied over a much greater range than the native shoulders (Table 1 (Figure 3)). Lateral offset of the joint center in RTSA shoulders was at least 6 mm smaller than the smallest joint center offset in the healthy shoulders. The center of rotation in RTSA shoulders was significantly more inferior than in healthy shoulders. The range of anterior/posterior placement of the rotation center for RTSA shoulders was bounded by the range for normal shoulders. How to best position RTSA implants for optimal patient outcomes remains a topic of great debate and research interest. We found that the 3D joint center position can vary over a supraphysiologic range in shoulders with RTSA, and that this variation is primarily in the coronal plane. By relating these geometric variations to muscle, shoulder and clinical function, we hope to establish methods and strategies for predictably obtaining the best clinical and functional outcomes for RTSA patients on a per-subject basis


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 47 - 47
1 Jan 2016
Mizu-uchi H Okazaki K D'Lima D Hamai S Okamoto S Iwamoto Y Matsuda S
Full Access

Introduction. Using the tibial extramedullary guide needs meticulous attention to accurately align the tray in total knee arthroplasty (TKA). We previously reported the risk for varus tray alignment if the anteroposterior (AP) axis of the ankle was used for the rotational direction of the guide. The purpose of our study was to determine whether aligning the rotational direction of the guide to the AP axis of the proximal tibia reduced the incidence of varus tray alignment when compared to aligning the rotational direction of the guide to the AP axis of the ankle. Materials and Methods. Clinical Study. A total of 80 osteoarthritis (OA) knees after posterior stabilized TKA were recruited in this study. From 2002 to 2004, the rotational alignment of the guide was adjusted to the AP axis of the ankle (Method A: Figure 1, N = 40 knees). After 2005, the rotational alignment of the guide was adjusted to the AP axis of the proximal tibia (Method B: Figure 1, N = 40 knees). The AP axis of the proximal tibia was defined as the line connecting the middle of the attachment of the PCL and the medial third border of the attachment of the patellar tendon. The guide was set at a level of 10 mm distal to the lateral articular surface. Postoperative alignment was compared between the two groups using full-lengthanteroposterior radiograph. Computer simulation. Computer simulation was performed to determine the effect of ankle rotation on tibial tray alignment, using three-dimensional bone and skin model reconstructed from CT images of 75 OA knees (Figure 2). The position of the distal end of the guide in Method B was evaluated on the coronal plane perpendicular to the AP axis of the proximal tibia and of the ankle respectively. <Displacement> was the distance from the distal end of the guide to the midpoint-malleolar points (+: medial position). <Distance ratio> was the ratio of <Displacement> dividing by the entire width of the malleolar. Results. The results of the postoperative alignment for both methods from the clinical study are shown in Table 1. The number of the knees with more than 3 degrees of varus aligned tibial component significantly decreased with the Method B from the Method A. The computer simulation showed that the position of the guide varied great among individuals in the direction of the AP axis of the ankle joint. Discussion. When an extramedullary alignment guide is used in TKA, a rotational mismatch between the proximal part of the tibia and the ankle joint can induce a varus alignment of the tibial component. Computer simulation also supported our conclusion that the surgeon should not evaluate the distal end of the guide in the direction of the ankle joint to minimize the effects of anatomic variation for proper coronal alignment